设A是n阶非0矩阵,如果存在一正整数k使得A^k=0,证明A不可能相似于对角矩阵.

 我来答
可杰17
2022-08-29 · TA获得超过949个赞
知道小有建树答主
回答量:309
采纳率:100%
帮助的人:55.4万
展开全部
假设A相似于对角矩阵Λ,
则由相似的定义有
A=P^(-1)ΛP,P可逆
所以
A^k=(P^(-1)ΛP)^k
=P^(-1)Λ^k*P=O
所以
Λ^k=O
即Λ=O
从而
A=P^(-1)ΛP=O
与A是n阶非0矩阵矛盾!
所以假设不成立,结论成立!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式