已知x²=x+1,y²=y+1,且x≠y。求x的五次方加y的五次方的值。
展开全部
已知x²=x+1,y²=y+1,且x≠y。求x的五次方加y的五次方的值。
x²=x+1,
x=(1±√5)/2
y²=y+1,
y=(1±√5)/2
x≠y
x+y=(1+√5)/2+(1-√5)/2=1
x^5+y^5
=x^2*x^2*x+y^2*y^2*y
=(x+1)(x+1)*x+(y+1)(y+1)*y
=x(x^2+2x+1)+y(y^2+2y+1)
=x(x+1+2x+1)+y(y+1+2y+1)
=x(3x+2)+y(3y+2)
=3x^2+2x+3y^2+2y
=3(x+1)+2x+3(y+1)+2y
=5x+3+5y+3
=5(x+y)+6
=5*1+6
=11
x²=x+1,
x=(1±√5)/2
y²=y+1,
y=(1±√5)/2
x≠y
x+y=(1+√5)/2+(1-√5)/2=1
x^5+y^5
=x^2*x^2*x+y^2*y^2*y
=(x+1)(x+1)*x+(y+1)(y+1)*y
=x(x^2+2x+1)+y(y^2+2y+1)
=x(x+1+2x+1)+y(y+1+2y+1)
=x(3x+2)+y(3y+2)
=3x^2+2x+3y^2+2y
=3(x+1)+2x+3(y+1)+2y
=5x+3+5y+3
=5(x+y)+6
=5*1+6
=11
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询