什么是矢量?
矢径就是矢量端点的路径。矢径是指从一个参考点指向一个研究对象点的矢量。这个研究对象点可以是力的作用点,如力对参考点的矩的概念要用到矢径,研究对象点也可以是运动中的质点,这时矢径是随时间变化的。
由定点O画到动点M的有向线段,称为动点M的矢径,它的分解式为矢径唯一的决定了点M的位置。当点M运动时,矢径r是随时间而变的变矢量,一般可表示为时间t的单值连续函数,这方程称为点M的矢量形式的运动方程。矢径的端点在空间描出的曲线称为矢径端图,它就是动点的轨迹。
矢量的运算法则
1、矢量之间的运算要遵循特殊的法则。矢量加法一般可用平行四边形法则。由平行四边形法则可推广至三角形法则、多边形法则或正交分解法等。矢量减法是矢量加法的逆运算,一个矢量减去另一个矢量,等于加上那个矢量的负矢量。即A-B=A+(-B)。矢量的乘法。
矢量和标量的乘积仍为矢量。矢量和矢量的乘积,可以构成新的标量,矢量间这样的乘积叫标积;也可构成新的矢量,矢量间这样的乘积叫矢积。例如,物理学中,功、功率等的计算是采用两个矢量的标积。W=F·s,P=F·v。力矩、洛伦兹力等的计算是采用两个矢量的矢积。M=r×F,F=qv×B。
2、物理定律的矢量表达跟坐标的选择无关,矢量符号为表述物理定律提供了简单明了的形式,且使这些定律的推导简单化,因此矢量是研究物理学的有用工具。
2024-07-20 广告