已知函数f(x)=ax^3+bx+c(a≠0)在点(1,f(1))处的切线方程为y=x-1. (1)用a分别表示b,c;
2个回答
展开全部
1、
把x=1代入y=x-1,得:y=0
所以,f(1)=0,即:a+b+c=0 ①
f'(1)=1,f'(x)=3ax²+b,
所以,3a+b=1 ②
由①②得:b=1-3a,c=2a-1
2、
f(x)=ax³-(3a-1)x+2a-1
f(x)+1-x³≧0对x≧2恒成立
ax³-3ax+2a+x-x³≧0对x≧2恒成立
a(x³-3x+2)+x-x³≧0
a(x-1)²(x+2)-x(x-1)(x+1)≧0
x-1>0,所以,a(x-1)(x+2)-x(x+1)≧0
a(x-1)(x+2)≧x(x+1)对x≧2恒成立
a≧x(x+1)/(x-1)(x+2)对x≧2恒成立
令g(x)=x(x+1)/(x-1)(x+2),x≧2
则:a≧g(x)max
g'(x)=[(2x+1)(x-1)(x+2)-(2x+1)x(x+1)]/(x-1)²(x+2)²
=-2(2x+1)/(x-1)²(x+2)²
因为x≧2,所以,g'(x)<0
所以,g(x)递减,
则:g(x)max=g(2)=3/2
所以,a≧3/2
祝你开心!希望能帮到你,如果不懂,请追问,祝学习进步!O(∩_∩)O
把x=1代入y=x-1,得:y=0
所以,f(1)=0,即:a+b+c=0 ①
f'(1)=1,f'(x)=3ax²+b,
所以,3a+b=1 ②
由①②得:b=1-3a,c=2a-1
2、
f(x)=ax³-(3a-1)x+2a-1
f(x)+1-x³≧0对x≧2恒成立
ax³-3ax+2a+x-x³≧0对x≧2恒成立
a(x³-3x+2)+x-x³≧0
a(x-1)²(x+2)-x(x-1)(x+1)≧0
x-1>0,所以,a(x-1)(x+2)-x(x+1)≧0
a(x-1)(x+2)≧x(x+1)对x≧2恒成立
a≧x(x+1)/(x-1)(x+2)对x≧2恒成立
令g(x)=x(x+1)/(x-1)(x+2),x≧2
则:a≧g(x)max
g'(x)=[(2x+1)(x-1)(x+2)-(2x+1)x(x+1)]/(x-1)²(x+2)²
=-2(2x+1)/(x-1)²(x+2)²
因为x≧2,所以,g'(x)<0
所以,g(x)递减,
则:g(x)max=g(2)=3/2
所以,a≧3/2
祝你开心!希望能帮到你,如果不懂,请追问,祝学习进步!O(∩_∩)O
追问
f'(1)=1请问这一步怎么来
追答
切线y=x-1
斜率k=1
所以f'(1)=1
展开全部
(1) f'(x) = 3ax² + b
f(1) = a + b + c
点(1,f(1))处的切线方程为y = x-1
f'(1) = 3a + b = 1, b = 1 - 3a
切线方程: y - (a + b + c) = (3a + b)(x - 1)
y = (3a + b)x - 2a + c
-2a + c = -1
c = 2a - 1
(2)
g(x) = f(x) + 1 - x³ = (a - 1)x³ + bx + 1
g'(x) = 3(a - 1)x² + b
要使x ≥ 2时,f(x)+1-x^3大于或等于0恒成立, 须:
x ≥ 2时, g'(x) > 0 (i)
且
g(2) ≥ 0 (ii)
g'(x) = 3(a - 1)x² + b为以x = 0为对称轴的抛物线,x ≥ 2时, g'(x) > 0, 须开口向上, a - 1 > 0, a > 1
g(2) = 8(a - 1) + 2(1 - 3a) + 1 = 2a - 5 ≥ 0, a ≥ 5/2
二者结合: a ≥ 5/2
f(1) = a + b + c
点(1,f(1))处的切线方程为y = x-1
f'(1) = 3a + b = 1, b = 1 - 3a
切线方程: y - (a + b + c) = (3a + b)(x - 1)
y = (3a + b)x - 2a + c
-2a + c = -1
c = 2a - 1
(2)
g(x) = f(x) + 1 - x³ = (a - 1)x³ + bx + 1
g'(x) = 3(a - 1)x² + b
要使x ≥ 2时,f(x)+1-x^3大于或等于0恒成立, 须:
x ≥ 2时, g'(x) > 0 (i)
且
g(2) ≥ 0 (ii)
g'(x) = 3(a - 1)x² + b为以x = 0为对称轴的抛物线,x ≥ 2时, g'(x) > 0, 须开口向上, a - 1 > 0, a > 1
g(2) = 8(a - 1) + 2(1 - 3a) + 1 = 2a - 5 ≥ 0, a ≥ 5/2
二者结合: a ≥ 5/2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询