函数y=Asin(ωx+φ)(x∈R,A>0,ω>0,φ的绝对值<π/2)的图像上相邻的最高点与最低点的坐标分别为
函数y=Asin(ωx+φ)(x∈R,A>0,ω>0,φ的绝对值<π/2)的图像上相邻的最高点与最低点的坐标分别为M(5π/12,3),N(11π/12,-3)(1)求此...
函数y=Asin(ωx+φ)(x∈R,A>0,ω>0,φ的绝对值<π/2)的图像上相邻的最高点与最低点的坐标分别为M(5π/12,3),N(11π/12,-3)
(1)求此函数的解析式
(2)f(x)的单调增区间
(3)f(x)的对称轴和对称中心
(4)f(x)的最小值以及取得最小值时的x的集合
(1)(2)问只写答案,(3)(4)写过程 展开
(1)求此函数的解析式
(2)f(x)的单调增区间
(3)f(x)的对称轴和对称中心
(4)f(x)的最小值以及取得最小值时的x的集合
(1)(2)问只写答案,(3)(4)写过程 展开
2个回答
展开全部
函数y=Asin(ωx+φ)(x∈R,A>0,ω>0,φ的绝对值<π/2)的图像上相邻的最高点与最低点的坐标分别为M(5π/12,3),N(11π/12,-3)
(1)求此函数的解析式
(2)f(x)的单调增区间
(3)f(x)的对称轴和对称中心
(4)f(x)的最小值以及取得最小值时的x的集合
(1)解析:∵函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<π/2),
∴A=3,T/2=11π/12-5π/12=π/2==>T=π==>w=2
∴f(x)=3sin(2x+φ)==> f(5π/12)=sin(5π/6+φ)=1==>5π/6+φ=π/2==>φ=-π/3
∴f(x)=3sin(2x-π/3)
(2)解析:∵f(x)=3sin(2x-π/3),单调减区间为[5π/12,11π/12]
∴单调增区间为[kπ-π/12,kπ+5π/12]
(3)解析:∵f(x)=3sin(2x-π/3),
对称轴为kπ-π/12或kπ+5π/12
对称中心为kπ-π/3或kπ+π/6
(4)解析:∵f(x)=3sin(2x-π/3),
2x-π/3=2kπ-π/2==>x=kπ-π/12
f(x)的最小值为-3,取得最小值时x=kπ-π/12
(1)求此函数的解析式
(2)f(x)的单调增区间
(3)f(x)的对称轴和对称中心
(4)f(x)的最小值以及取得最小值时的x的集合
(1)解析:∵函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<π/2),
∴A=3,T/2=11π/12-5π/12=π/2==>T=π==>w=2
∴f(x)=3sin(2x+φ)==> f(5π/12)=sin(5π/6+φ)=1==>5π/6+φ=π/2==>φ=-π/3
∴f(x)=3sin(2x-π/3)
(2)解析:∵f(x)=3sin(2x-π/3),单调减区间为[5π/12,11π/12]
∴单调增区间为[kπ-π/12,kπ+5π/12]
(3)解析:∵f(x)=3sin(2x-π/3),
对称轴为kπ-π/12或kπ+5π/12
对称中心为kπ-π/3或kπ+π/6
(4)解析:∵f(x)=3sin(2x-π/3),
2x-π/3=2kπ-π/2==>x=kπ-π/12
f(x)的最小值为-3,取得最小值时x=kπ-π/12
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询