观察下列各式,1/6=1/2*3=1/2-1/3;1/12=1/3*4=1/3-1/4:1/20=1/4*5=1/4-1/5;1/30=1/5*6=1/5-1/6...... 15
(1)试猜想用上述规律,用含字母n的等式表示出来,并证明(n表示整数)(2)用上面的规律解方程:1/(x-2)(x-3)-2/(x-1)(x-3)+1/(x-1)(x-2...
(1)试猜想用上述规律,用含字母n的等式表示出来,并证明(n表示整数)
(2)用上面的规律解方程:1/(x-2)(x-3)-2/(x-1)(x-3)+1/(x-1)(x-2) 展开
(2)用上面的规律解方程:1/(x-2)(x-3)-2/(x-1)(x-3)+1/(x-1)(x-2) 展开
2个回答
展开全部
1/(n*(n+1))=1/n-1/(n+1)
证明:1/(n*(n+1))=1/n-1/(n+1)=(n+1-n)/(n*(n+1))=1/(n*(n+1))
这方程怎么没有等号????
1/(x-2)(x-3)-2/(x-1)(x-3)+1/(x-1)(x-2)=1/(x-2)(x-3)-1/(x-1)(x-3)+)-1/(x-1)(x-3)+1/(x-1)(x-2)
=1/(x-3)*(1/(x-2)-1/(x-1))+1/(x-1)*(1/(x-2)-1/(x-3))
=-1/((x-3)*((x-2)(x-1)))+1/((x-3)*((x-2)(x-1)))=0
证明:1/(n*(n+1))=1/n-1/(n+1)=(n+1-n)/(n*(n+1))=1/(n*(n+1))
这方程怎么没有等号????
1/(x-2)(x-3)-2/(x-1)(x-3)+1/(x-1)(x-2)=1/(x-2)(x-3)-1/(x-1)(x-3)+)-1/(x-1)(x-3)+1/(x-1)(x-2)
=1/(x-3)*(1/(x-2)-1/(x-1))+1/(x-1)*(1/(x-2)-1/(x-3))
=-1/((x-3)*((x-2)(x-1)))+1/((x-3)*((x-2)(x-1)))=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
公式:
1/n(n+1) = 1/n - 1/(n+1),其中:n为正整数
证明:
1/n(n+1)
=[(n+1) - n] / n(n+1)
=(n+1) / n(n+1) - n / n(n+1)
=1/n - 1/(n+1)
解:
(2)
1/(x-2)(x-3) = [(x-2)-(x-3)] / (x-2)(x-3) = (x-2)/(x-2)(x-3) - (x-3)/(x-2)(x-3)
=1(x-3) - 1/(x-2)
-2/(x-1)(x-3) =-[(x-1)-(x-3)] / (x-1)(x-3) = (x-2) (x-2)(x-3) - (x-3) (x-1)(x-3)
= -1/(x-3) + 1/(x-1)
1/(x-1)(x-2) =[(x-1)-(x-2)]/(x-1)(x-2) = (x-1)/(x-1)(x-2) - (x-2)/(x-1)(x-2)
=1/(x-2) - 1/(x-1)
上述各式相加:
左边=1/(x-3) - 1/(x-2) - 1/(x-3) + 1/(x-1) + 1/(x-2) - 1/(x-1)
= 0
公式:
1/n(n+1) = 1/n - 1/(n+1),其中:n为正整数
证明:
1/n(n+1)
=[(n+1) - n] / n(n+1)
=(n+1) / n(n+1) - n / n(n+1)
=1/n - 1/(n+1)
解:
(2)
1/(x-2)(x-3) = [(x-2)-(x-3)] / (x-2)(x-3) = (x-2)/(x-2)(x-3) - (x-3)/(x-2)(x-3)
=1(x-3) - 1/(x-2)
-2/(x-1)(x-3) =-[(x-1)-(x-3)] / (x-1)(x-3) = (x-2) (x-2)(x-3) - (x-3) (x-1)(x-3)
= -1/(x-3) + 1/(x-1)
1/(x-1)(x-2) =[(x-1)-(x-2)]/(x-1)(x-2) = (x-1)/(x-1)(x-2) - (x-2)/(x-1)(x-2)
=1/(x-2) - 1/(x-1)
上述各式相加:
左边=1/(x-3) - 1/(x-2) - 1/(x-3) + 1/(x-1) + 1/(x-2) - 1/(x-1)
= 0
更多追问追答
追问
n代表什么
给代个数
追答
n去正整数啊
比如n可以等于2,那么就是1/2*3;
n可以等于3,那么就是1/3*4
等等
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询