求 1/a+(1/b)(1+1/a)+(1/c)(1+1/a)(1+1/b)+(1/d)(1+1/a)(1+1/b)(1+1/c)-(1+1/a)(1+1/b)(1+/c)(1+1/d)

BAIDUYONGHUAKM47A1
2013-03-18 · TA获得超过1万个赞
知道大有可为答主
回答量:2010
采纳率:71%
帮助的人:888万
展开全部
1/a+(1/b)(1+1/a)+(1/c)(1+1/a)(1+1/b)+(1/d)(1+1/a)(1+1/b)(1+1/c)-(1+1/a)(1+1/b)(1+/c)(1+1/d)

=1/a+(1/b)[(a+1)/a]+(1/c)[(a+1)/a][(b+1)/b]+(1/d)[(a+1)/a][(b+1)/b][(c+1)/c]-[(a+1)/a][(b+1)/b][(c+1)/c][(d+1)/d]

=1/a+(a+1)/(ab)+(a+1)(b+1)/(abc)+(a+1)(b+1)(c+1)/(abcd)-(a+1)(b+1)(c+1)(d+1)/(abcd)

=bcd/(abcd)+cd(a+1)/(abcd)+d(a+1)(b+1)/(abcd)+(a+1)(b+1)(c+1)/(abcd)-(a+1)(b+1)(c+1)(d+1)/(abcd)

=[bcd+cd(a+1)+d(a+1)(b+1)+(a+1)(b+1)(c+1)-(a+1)(b+1)(c+1)(d+1)]/(abcd)

={bcd+(a+1)[(cd+d(b+1)+(b+1)(c+1)-(b+1)(c+1)(d+1)]}/(abcd)

={bcd+(a+1){{cd+(b+1)[d+(c+1)-(c+1)(d+1)]}}}/(abcd)

={bcd+(a+1){{cd+(b+1){d+(c+1)[1-(d+1)]}}}}/(abcd)

={bcd+(a+1){{cd+(b+1)[d-d(c+1)]}}}/(abcd)

={bcd+(a+1){{cd+(b+1){d[1-(c+1)]}}}}/(abcd)

={bcd+(a+1)[cd-cd(b+1)]}/(abcd)

={bcd+(a+1){cd[1-(b+1)]}/(abcd)

=[bcd-bcd(a+1)]/(abcd)

={bcd[1-(a+1)]}/(abcd)

=(-abcd)/(abcd)

=-1
追问
怎么会有这么多的步骤,你确定是正确答案吗?现在我没带那本书,那就请你先缓一缓吧!
我下周可能就能采纳了,希望你能继续加油,谢谢!!
追答
其实就三个步骤,1.分母通分,2.分子相加或相减,3.多次提公因式,这样可以避免繁琐的计算,如果直接展开,会有很多项,会有几次方的项,一不小心就容易算错。这题正好提最后的项的公因式之后,会出现又可以继续提公因式的式子,既然题目中的式子特殊,不如用特殊的简便的方法来解,不需要全部展开那么麻烦。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式