辽宁省五校协作体2013届高三第一次模拟考试数学试题第16题的答案及过程
展开全部
解:设外接圆半径为R,则:
(cosB/sinC)*向量AB+(cosC/sinB)*向量AC=2m*向量AO可化为:
(cosB/sinC)*(向量OB-向量OA)+(cosC/sinB)*(向量OC-OA)=-2m*向量OA (*)
易知向量OB与OA的夹角为2∠C,向量OC与OA的夹角为2∠B,向量OA与OA的夹角为0,
|向量OA|=|向量OB|=|向量OC|=R
则对(*)式左右分别与向量OA作数量积,可得:
(cosB/sinC)*(向量OB*向量OA-向量OA*向量OA)+(cosC/sinB)*(向量OC*向量OA-向量OA*向量OA)=-2m*(向量OA*向量OA)
即(cosB/sinC)*R²(cos2C -1)+(cosC/sinB)*R²(cos2B -1)=-2m*R²
2sin²C*cosB/sinC +2sin²B*cosC/sinB=2m
sinC*cosB+sinB*cosC=m
sin(B+C)=m
因为sinA=sin[π-(B+C)]=sin(B+C)且∠A=θ
所以m=sinA=sinθ
若无疑问亲尽快采纳,别降低我的采纳率了,点击我的回答下方【选为满意回答】按钮,采纳是我们回答的动力, O(∩_∩)O谢谢合作
(cosB/sinC)*向量AB+(cosC/sinB)*向量AC=2m*向量AO可化为:
(cosB/sinC)*(向量OB-向量OA)+(cosC/sinB)*(向量OC-OA)=-2m*向量OA (*)
易知向量OB与OA的夹角为2∠C,向量OC与OA的夹角为2∠B,向量OA与OA的夹角为0,
|向量OA|=|向量OB|=|向量OC|=R
则对(*)式左右分别与向量OA作数量积,可得:
(cosB/sinC)*(向量OB*向量OA-向量OA*向量OA)+(cosC/sinB)*(向量OC*向量OA-向量OA*向量OA)=-2m*(向量OA*向量OA)
即(cosB/sinC)*R²(cos2C -1)+(cosC/sinB)*R²(cos2B -1)=-2m*R²
2sin²C*cosB/sinC +2sin²B*cosC/sinB=2m
sinC*cosB+sinB*cosC=m
sin(B+C)=m
因为sinA=sin[π-(B+C)]=sin(B+C)且∠A=θ
所以m=sinA=sinθ
若无疑问亲尽快采纳,别降低我的采纳率了,点击我的回答下方【选为满意回答】按钮,采纳是我们回答的动力, O(∩_∩)O谢谢合作
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询