3个回答
展开全部
已知向量a=(CosX,根号3SinX),b=(CosX,CosX),函数f(X)=a乘b,求函数f(X)在【-π/2,0】的值域
解析:f(x)=(cosx)^2+√3sinxcosx=1/2+cos2x/2+√3/2sin2x=sin(2x+π/6)+1/2
f(-π/2)=sin(-π+π/6)+1/2=0
f(-π/3)=sin(-2π/3+π/6)+1/2=-1/2
f(0)=sin(0+π/6)+1/2=1
所以f(X)在【-π/2,0】的值域【-1/2,1】(x)
=cos²x+√3sinxcosx
=1/2(2cos²x-1)+√3sinxcosx+1/2
=1/2cos2x+√3/2sin2x+1/2
=cos(2x-π/3)+1/2
当x∈[-π/2,0]时,(2x-π/3)∈[-4π/3,-π/3]
2x-π/3=-π/3时,f(x)取最大为1;2x-π/3=-π时,f(x)取最小为-1/2
故f(x)的值域为[-1/2,1]
解析:f(x)=(cosx)^2+√3sinxcosx=1/2+cos2x/2+√3/2sin2x=sin(2x+π/6)+1/2
f(-π/2)=sin(-π+π/6)+1/2=0
f(-π/3)=sin(-2π/3+π/6)+1/2=-1/2
f(0)=sin(0+π/6)+1/2=1
所以f(X)在【-π/2,0】的值域【-1/2,1】(x)
=cos²x+√3sinxcosx
=1/2(2cos²x-1)+√3sinxcosx+1/2
=1/2cos2x+√3/2sin2x+1/2
=cos(2x-π/3)+1/2
当x∈[-π/2,0]时,(2x-π/3)∈[-4π/3,-π/3]
2x-π/3=-π/3时,f(x)取最大为1;2x-π/3=-π时,f(x)取最小为-1/2
故f(x)的值域为[-1/2,1]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已知向量a=(CosX,根号3SinX),b=(CosX,CosX),函数f(X)=a乘b,求函数f(X)在【-π/2,0】的值域
解析:f(x)=(cosx)^2+√3sinxcosx=1/2+cos2x/2+√3/2sin2x=sin(2x+π/6)+1/2
f(-π/2)=sin(-π+π/6)+1/2=0
f(-π/3)=sin(-2π/3+π/6)+1/2=-1/2
f(0)=sin(0+π/6)+1/2=1
所以f(X)在【-π/2,0】的值域【-1/2,1】
解析:f(x)=(cosx)^2+√3sinxcosx=1/2+cos2x/2+√3/2sin2x=sin(2x+π/6)+1/2
f(-π/2)=sin(-π+π/6)+1/2=0
f(-π/3)=sin(-2π/3+π/6)+1/2=-1/2
f(0)=sin(0+π/6)+1/2=1
所以f(X)在【-π/2,0】的值域【-1/2,1】
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询