1、 已知方程x2+bx+c=0及x2+cx+b=0分别有两个正整数根x1,x2和x3,x4,且x1x2>0,x3x4>0.求证:b-1≤c≤b+1

xsyhzhb1991
2013-04-07 · TA获得超过1.4万个赞
知道大有可为答主
回答量:5125
采纳率:75%
帮助的人:8878万
展开全部
根据韦达定理
x1x2=c>0
x3x4=b>0
x1+x2=-b
x3+x4=-c
因为两个方程都有两个正整数根
x1,x2,x3,x4都是正整数
因此c和b也是正整数
c-b=x1x2-x1-x2
=(x1-1)(x2-1)-1
≥0*0-1
故c≥b-1
同理b≥c-1
即c≤b+1
综上b-1≤c≤b+1

如果认为讲解不够清楚,请追问。
祝:学习进步!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式