如图,二次函数y=ax²+4x+c的图象与X轴交于A、B两点
如图,二次函数y=ax²+4x+c的图象与X轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5)在抛物线上,M为抛物线的顶点。求抛物线的解析式。求△MC...
如图,二次函数y=ax²+4x+c的图象与X轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5)在抛物线上,M为抛物线的顶点。求抛物线的解析式。求△MCB的面积
展开
4个回答
展开全部
解:∵A、C
∴a-4+c=0, c=5
∴a=-1
∴抛物线的解析式:y=-x²+4x+5
∵y=-(x-2)²+9
∴M(2,9)
∵y=-x²+4x+5=0
∴B(5,0)
作MD⊥x轴于D
∴S△MCB=S梯形CODM+S△MDB-S△COB
=1/2(5+9)*2+1/2(5-2)*9-1/2*5*5=15
∴a-4+c=0, c=5
∴a=-1
∴抛物线的解析式:y=-x²+4x+5
∵y=-(x-2)²+9
∴M(2,9)
∵y=-x²+4x+5=0
∴B(5,0)
作MD⊥x轴于D
∴S△MCB=S梯形CODM+S△MDB-S△COB
=1/2(5+9)*2+1/2(5-2)*9-1/2*5*5=15
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由C点坐标,讲x=0带入解析式得c=5,
将A点坐标带入解析式,0=a*(-1)*(-1)+4*(-1)+5,所以a=-1
解析式为 y=-x²+4x+5=-(x-5)(x+1)=-(x-2)²+9,
B坐标为(5,0),M坐标为(2,9),
可从M点做垂线垂直交X轴于D点
则梯形ODMC的面积S1=(5+9)*2/2=14,
三角形DBM的面积S2=3*9/2=13.5,
三角形OBC面积S3=5*5/2=12.5,
所以三角形MCB的面积S=S1+S2-S3=15
将A点坐标带入解析式,0=a*(-1)*(-1)+4*(-1)+5,所以a=-1
解析式为 y=-x²+4x+5=-(x-5)(x+1)=-(x-2)²+9,
B坐标为(5,0),M坐标为(2,9),
可从M点做垂线垂直交X轴于D点
则梯形ODMC的面积S1=(5+9)*2/2=14,
三角形DBM的面积S2=3*9/2=13.5,
三角形OBC面积S3=5*5/2=12.5,
所以三角形MCB的面积S=S1+S2-S3=15
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一:根据A,C的坐标的坐标求出来解析式
二:根据解析式求出M,B点的坐标
三:根据C M B的坐标求出CM CB BM 的边长 就可以求出面积了。
二:根据解析式求出M,B点的坐标
三:根据C M B的坐标求出CM CB BM 的边长 就可以求出面积了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询