数学中如何区分命题与定义?
例如:同旁内角互补,两直线平行。
数据分组后落在各小组内的数据叫做频数。
这都是什么啊。哪位能叫个方法判定命题与定义啊? 展开
定义是认识主体使用判断或命题的语言逻辑形式,确定一个认识对象或事物在有关事物的综合分类系统中的位置和界限,使这个认识对象或事物从有关事物的综合分类系统中彰显出来的认识行为。
命题这个概念是可以被定义并观察的现象,命题不是指判断(陈述)本身,而是指所表达的语义。当相异判断(陈述)具有相同语义的时候,他们表达相同的命题。
即定义是人为规定的,命题是判断句式,命题有真假,定义没有。
扩展资料:
命题的分类:
1、对于两个命题,如果一个命题的条件和 结论分别是另外一个命题的结论和条件,那么这两个命题叫做 互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的 逆命题。
2、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做 原命题,另外一个命题叫做原命题的 否命题。
3、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做 互为逆否命题,其中一个命题叫做 原命题,另外一个命题叫做原命题的 逆否命题。
参考资料来源:百度百科-数学命题
(1)初中数学中命题的概念为:“判断一件事情的语句”;高中教材中定义为:“可以判断真假的语句”
(2).一般地,在数学中,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。
(3).“若p,则q”形式的命题中p叫做命题的题设,q叫做命题的结论。
例如:同旁内角互补,两直线平行。
就是一个命题。
该命题的题设为:同旁内角互补
该命题的结论为:两直线平行
定义
一般来说,数学概念是运用定义的形式来揭露其本质特征的。
定义是准确地表达数学概念的方式。
如:数据分组后落在各小组内的数据叫做频数。就是频数的定义。
又如函数、极限的定义等。
一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。其中判断为真的语句叫做真命题,判断为假的语句叫做假命题
定义是通过真命题证明得出的
望采纳
2013-04-11
定义是通过列出一个事物或者一个物件的基本属性来描写或者规范一个词或者一个概念的意义。被定义的事物或者物件叫做被定义项,其定义叫做定义项。