指数为复数怎么计算啊
例如4^j(-5)我这里的题是e^j(69度)PS(69度)是角度这题是交流电里求阻抗的一道题其中一个式子忘记怎么计算了知道的麻烦给说下详细过程谢谢了...
例如 4^j(-5)我这里的题是 e^j(69度) PS(69度)是角度 这题是交流电里求阻抗的一道题 其中一个式子 忘记怎么计算了 知道的麻烦给说下详细过程 谢谢了
展开
2013-04-12
展开全部
复变函数论里的欧拉公式e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。 e^ix=cosx+isinx的证明: 因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+…… cos x=1-x^2/2!+x^4/4!-x^6/6!…… sin x=x-x^3/3!+x^5/5!-x^7/7!…… 在e^x的展开式中把x换成±ix. (±i)^2=-1, (±i)^3=�6�2i, (±i)^4=1 …… e^±ix=1±ix/1!-x^2/2!+x^3/3!�6�2x^4/4!…… =(1-x^2/2!+……)±i(x-x^3/3!……) 所以e^±ix=cosx±isinx 将公式里的x换成-x,得到: e^-ix=cosx-isinx,然后采用两式相加减的方法得到: sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作π就得到: e^iπ+1=0. 这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及被称为人类伟大发现之一的0。数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。
推荐于2017-12-16
展开全部
用欧拉公式,e^(jx)=cosx+jsinx,所以向e^j(69度)=cos(69度)+jsin(69度)。具体等于多少就要用计算器了或查表了,以为我不记得cos(69度)的值,关键记住欧拉公式就行了!
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
复变函数论里的欧拉公式e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。
e^ix=cosx+isinx的证明:
因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+……
cos
x=1-x^2/2!+x^4/4!-x^6/6!……
sin
x=x-x^3/3!+x^5/5!-x^7/7!……
在e^x的展开式中把x换成±ix.
(±i)^2=-1,
(±i)^3=??i,
(±i)^4=1
……
e^±ix=1±ix/1!-x^2/2!+x^3/3!??x^4/4!……
=(1-x^2/2!+……)±i(x-x^3/3!……)
所以e^±ix=cosx±isinx
将公式里的x换成-x,得到:
e^-ix=cosx-isinx,然后采用两式相加减的方法得到:
sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作π就得到:
e^iπ+1=0.
这个恒等式也叫做欧拉公式,它是数学里最令人
e^ix=cosx+isinx的证明:
因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+……
cos
x=1-x^2/2!+x^4/4!-x^6/6!……
sin
x=x-x^3/3!+x^5/5!-x^7/7!……
在e^x的展开式中把x换成±ix.
(±i)^2=-1,
(±i)^3=??i,
(±i)^4=1
……
e^±ix=1±ix/1!-x^2/2!+x^3/3!??x^4/4!……
=(1-x^2/2!+……)±i(x-x^3/3!……)
所以e^±ix=cosx±isinx
将公式里的x换成-x,得到:
e^-ix=cosx-isinx,然后采用两式相加减的方法得到:
sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作π就得到:
e^iπ+1=0.
这个恒等式也叫做欧拉公式,它是数学里最令人
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
复数z=a+bi有三角表示式z=rcosθ+irsinθ,可以化为指数表示式z=r*exp(iθ)。exp()为自然对数的底e的指数函数。即:exp(iθ)=cosθ+isinθ。
证明可以通过幂级数展开或对函数两端积分得到,是复变函数的基本公式。
证明可以通过幂级数展开或对函数两端积分得到,是复变函数的基本公式。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |