微积分证明题~!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~··
2个回答
展开全部
构造函数G(x)=f(x)-(x²)[f(1)-f(0)]
G(1)=f(1)-[f(1)-f(0)]=f(0)
G(0)=f(0)-0=f(0)由柯西中值定理知
存在一点ξ 使得G'(ξ )=0
G'(x )=f'(x )-2x[f(1)-f(0)]
G'(ξ )=f'(ξ )-2ξ[f(1)-f(0)]=0即存在点ξ 使得f'(ξ )=2ξ[f(1)-f(0)]
【数学之美】团队很高兴为您解决问题!
有不明白的可以追问我哟!
如果觉得答案可以,请点击下面的【选为满意回答】按钮!
还有什么有点小困惑的,可以求助我哦,亲~
G(1)=f(1)-[f(1)-f(0)]=f(0)
G(0)=f(0)-0=f(0)由柯西中值定理知
存在一点ξ 使得G'(ξ )=0
G'(x )=f'(x )-2x[f(1)-f(0)]
G'(ξ )=f'(ξ )-2ξ[f(1)-f(0)]=0即存在点ξ 使得f'(ξ )=2ξ[f(1)-f(0)]
【数学之美】团队很高兴为您解决问题!
有不明白的可以追问我哟!
如果觉得答案可以,请点击下面的【选为满意回答】按钮!
还有什么有点小困惑的,可以求助我哦,亲~
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询