已知数列{an}的前n项和Sn,Sn=3n的平方-2n求数列1/an*an+1的前n项和Tn
3个回答
展开全部
Sn=3n²-2n,则:
当n=1时,a2=S1=1;
当n≥2时,an=Sn-S(n-1)=6n-5
因n=1也满足,则:an=6n-5
设数列bn={1/an*an+1}
bn=1/[(6n-5)(6n+1)]=(1/6)[1/(6n-5)-1/(6n+1)]
Sn=(1/6)[1-1/7+1/7-1/13+.......+1/(6n-5)-1/(6n+1)]
=(1/6)[1-1/(6n+1)]
=n/(6n+1)
如果本题有什么不明白可以追问,如果满意记得采纳
如果有其他问题请另发或点击向我求助,答题不易,请谅解,谢谢。
祝学习进步!
当n=1时,a2=S1=1;
当n≥2时,an=Sn-S(n-1)=6n-5
因n=1也满足,则:an=6n-5
设数列bn={1/an*an+1}
bn=1/[(6n-5)(6n+1)]=(1/6)[1/(6n-5)-1/(6n+1)]
Sn=(1/6)[1-1/7+1/7-1/13+.......+1/(6n-5)-1/(6n+1)]
=(1/6)[1-1/(6n+1)]
=n/(6n+1)
如果本题有什么不明白可以追问,如果满意记得采纳
如果有其他问题请另发或点击向我求助,答题不易,请谅解,谢谢。
祝学习进步!
追问
谢谢 那个中间1/[(6n-5)(6n+1)]=(1/6)[1/(6n-5)-1/(6n+1)]这步骤 把前面的分数拆成两个相减的分数 有什么技巧 我拆了半个小时拆不了。。。
追答
我们把这种叫做裂项求和
主要你看n的前面系数相等,就能拆开相减
1/[(6n-5)(6n+1)]
系数=6
展开全部
当n>1时,
an=Sn-Sn-1=3n^2-2n-3(n-1)^2+2(n-1)=6n-5
当n=1时,a1=S1=1,符合
故有an=6n-5
bn=1/an*a(n+1)=1/(6n-5)(6n+1)=1/6[1/(6n-5)-1/(6n+1)]
Tn=1/6[1-1/7]+1/6[1/7-1/13]+...+1/6[1/(6n-5)-1/(6n+1)]
=1/6[1-1/(6n+1)]
=1/6*6n/(6n+1)
=n/(6n+1)
an=Sn-Sn-1=3n^2-2n-3(n-1)^2+2(n-1)=6n-5
当n=1时,a1=S1=1,符合
故有an=6n-5
bn=1/an*a(n+1)=1/(6n-5)(6n+1)=1/6[1/(6n-5)-1/(6n+1)]
Tn=1/6[1-1/7]+1/6[1/7-1/13]+...+1/6[1/(6n-5)-1/(6n+1)]
=1/6[1-1/(6n+1)]
=1/6*6n/(6n+1)
=n/(6n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-04-25
展开全部
Sn=3n^2-2n
an=Sn-Sn-1=6n-5
又因为1/(an*an+1)=1/an-1/an+1
所以Tn=(1/a1*a2)+1/(a2*a3)+……+1/(an*an+1)
Tn=1/a1-1/a2+1/a2-1/a3+……+1/an-1an+1
=1/a1-1/an+1 an+1=6n+1
=6n/(6n+1)
an=Sn-Sn-1=6n-5
又因为1/(an*an+1)=1/an-1/an+1
所以Tn=(1/a1*a2)+1/(a2*a3)+……+1/(an*an+1)
Tn=1/a1-1/a2+1/a2-1/a3+……+1/an-1an+1
=1/a1-1/an+1 an+1=6n+1
=6n/(6n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询