∫∫∫Ω√x^2+y^2+z^2dv,Ω是由球面x^2+y^2+z^2=z所围成的区域?用球面坐标变换求上述三重积分。
2个回答
展开全部
x² + y² + z² = z <--> x² + y² + (z - 1/2)² = (1/2)⁵
--> r = cosφ
∫∫∫ √(x² + y² + z²) dxdydz
= ∫(0→2π) dθ ∫(0→π/2) sinφ dφ ∫(0→cosφ) r³ dr
= 2π • ∫(0→π/2) sinφ • (1/4)[ r⁴ ] |(0→cosφ)
= (π/2) • ∫(0→π/2) sinφ(cos⁴φ) dφ
= (- π/2)(1/5) • [ cos⁵φ ] |(0→π/2)
= (- π/10) • (0 - 1)
= π/10
--> r = cosφ
∫∫∫ √(x² + y² + z²) dxdydz
= ∫(0→2π) dθ ∫(0→π/2) sinφ dφ ∫(0→cosφ) r³ dr
= 2π • ∫(0→π/2) sinφ • (1/4)[ r⁴ ] |(0→cosφ)
= (π/2) • ∫(0→π/2) sinφ(cos⁴φ) dφ
= (- π/2)(1/5) • [ cos⁵φ ] |(0→π/2)
= (- π/10) • (0 - 1)
= π/10
追问
第一条公式等号右边应该是(1/2)^2吧,那么请问如何确定φ的取值范围为0~π/2的呢?如果可以的话,可以给出相应的积分区域图吗?谢谢.....
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询