若函数f(x)=x^3+3ax^2+3(a+2)x+1既有极大值,又有极小值,则实数a的取值范围是?
4个回答
展开全部
解函数f(x)=x^3+3ax^2+3(a+2)x+1既有极大值,又有极小值,
且其导函数为f'(x)=[x^3+3ax^2+3(a+2)x+1]'=3x²+6ax+3(a+2)为二次函数
则f'(x)=0必有两个不相等的实根
则Δ>0
即(6a)²-4*3*3(a+2)>0
即a²-(a+2)>0
即(a-2)(a+1)>0
即a>2或a<-1
且其导函数为f'(x)=[x^3+3ax^2+3(a+2)x+1]'=3x²+6ax+3(a+2)为二次函数
则f'(x)=0必有两个不相等的实根
则Δ>0
即(6a)²-4*3*3(a+2)>0
即a²-(a+2)>0
即(a-2)(a+1)>0
即a>2或a<-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
F(X)的导函数为3X^2+6ax+3(a+2)
要有2个实数根
,那么豋儿塔>0,即36a^2-36a-72>0,化简就得a^2-a-2>0那么答案是a>2和a<-1
要有2个实数根
,那么豋儿塔>0,即36a^2-36a-72>0,化简就得a^2-a-2>0那么答案是a>2和a<-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=x^3+3ax^2+3(a+2)x+1
f'(x) =3x^2+6ax+3(a+2) =0
x^2+2ax+(a+2) =0
(2a)^2-4(a+2) >0
a^2-a-2 >0
(a-2)(a+1)>0
a>2 or a<1
f'(x) =3x^2+6ax+3(a+2) =0
x^2+2ax+(a+2) =0
(2a)^2-4(a+2) >0
a^2-a-2 >0
(a-2)(a+1)>0
a>2 or a<1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询