设α为锐角,若cos(α+π/3)=4/5,则sin(2α+π/6)=?
展开全部
cos(α+π/3)=4/5→sin(α+π/3)=3/5
所以sin(2α+2π/3)=2cos(α+π/3)sin(α+π/3)=24/25
所以sin(2α+π/6)=sin(2α+2π/3-π/2)=sin(2α+2π/3)cos(π/2)-cos(2α+2π/3)sin(π/2)=-cos(2α+2π/3)=-7/25
所以sin(2α+2π/3)=2cos(α+π/3)sin(α+π/3)=24/25
所以sin(2α+π/6)=sin(2α+2π/3-π/2)=sin(2α+2π/3)cos(π/2)-cos(2α+2π/3)sin(π/2)=-cos(2α+2π/3)=-7/25
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sin(2α+π/6)
=sin(α+π/3+α-π/6)
=sin(α+π/3)cos(α-π/6)+cos(α+π/3)sin(α-π/6)
=sin(α+π/3)cos(α+π/3-π/2)+cos(α+π/3)sin(α+π/3-π/2)
=3/5×3/5+4/5×(﹣4/5)
=﹣7/25
=sin(α+π/3+α-π/6)
=sin(α+π/3)cos(α-π/6)+cos(α+π/3)sin(α-π/6)
=sin(α+π/3)cos(α+π/3-π/2)+cos(α+π/3)sin(α+π/3-π/2)
=3/5×3/5+4/5×(﹣4/5)
=﹣7/25
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询