如图,在四边形ABCD中,AD//BC,E是AB的中点,

(2012•镇江)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:... (2012•镇江)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.
(1)求证:△ADE≌△BFE;
(2)连接EG,判断EG与DF的位置关系并说明理由.
展开
我叫症异宅
2013-05-01 · TA获得超过217个赞
知道答主
回答量:60
采纳率:0%
帮助的人:48.9万
展开全部

(1)证明:∵AD∥BC,∴∠ADE=∠BFE,
∵E为AB的中点,∴AE=BE,
在△AED和△BFE中,

∠ADE=∠EFB

∠AED=∠BEF

AE=BE

∴△AED≌△BFE(AAS);

(2)解:EG与DF的位置关系是EG⊥DF,
理由为:连接EG,
∵∠GDF=∠ADE,∠ADE=∠BFE,
∴∠GDF=∠BFE,
由(1)△AED≌△BFE得:DE=EF,即GE为DF上的中线,
∴GE⊥DF.

帐号已注销
2013-11-07 · TA获得超过1600个赞
知道答主
回答量:107
采纳率:0%
帮助的人:30万
展开全部
(2):EG垂直DF
∵∠ADE=∠EFB
又∠GDF=∠ADF
∴∠GDF=∠EFB
∴DG=FG
∵ 在△ADE全等于△BFE
∴DE=FE
在△DEG和△FEG中
DE=FE
∠GDE=∠EFG
DG=FG
∴△EDG全等于△EFG
∴∠DEG=∠FEG=1/2∠DEF=90°
∴EG⊥DF

或:连接EG,
∵∠GDF=∠ADE,∠ADE=∠BFE,
∴∠GDF=∠BFE,
由(1)△AED≌△BFE得:DE=EF,即GE为DF上的中线,
∴GE⊥DF.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
love潮职
2013-05-01
知道答主
回答量:45
采纳率:0%
帮助的人:9.1万
展开全部
图呢
第一道利用角角边不就可以
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式