初三数学题,求详细解析
如图,抛物线y=ax2+bx(a>0)与双曲线y=k/x相交于点A,B.已知点A的坐标为(1,4),点B在第三象限内,连结AB交y轴于点E,且S△BOE=2/3S△AOB...
如图,抛物线y=ax2+bx(a>0)与双曲线y=k/x相交于点A,B.已知点A的坐标为(1,4),点B在第三象限内,连结AB交y轴于点E,且S△BOE=2/3S△AOB(O为坐标原点).
(1)求此抛物线的函数关系式;(2)过点A作直线平行于x轴交抛物线于另一点C.问在y轴上是否存在点P,使△POC与△OBE相似,若存在,求出点P的坐标,若不存在,请简要说明理由.
(3)抛物线于x轴的负半轴交与点D,过点B作直线l∥y轴,点Q在直线l上运动,且点Q的纵坐标为t,试探索:当S△AOB<S△QOD<S△BOC时,求t的取值范围. 展开
(1)求此抛物线的函数关系式;(2)过点A作直线平行于x轴交抛物线于另一点C.问在y轴上是否存在点P,使△POC与△OBE相似,若存在,求出点P的坐标,若不存在,请简要说明理由.
(3)抛物线于x轴的负半轴交与点D,过点B作直线l∥y轴,点Q在直线l上运动,且点Q的纵坐标为t,试探索:当S△AOB<S△QOD<S△BOC时,求t的取值范围. 展开
2个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询