如图,已知梯形ABCD中,AD平行于BC,E、F分别是AB、CD的中点,点G在边BC上,
如图,已知梯形ABCD中,AD平行于BC,E、F分别是AB、CD的中点,点G在边BC上,且CG=二分之一(AD+BC)1、求证:平行四边形DEGF是平行四边形2、连接DG...
如图,已知梯形ABCD中,AD平行于BC,E、F分别是AB、CD的中点,点G在边BC上,且CG=二分之一(AD+BC)
1、求证:平行四边形DEGF是平行四边形
2、连接DG,若角ADG=2角ADE,求证:四边形DEGF是菱形 展开
1、求证:平行四边形DEGF是平行四边形
2、连接DG,若角ADG=2角ADE,求证:四边形DEGF是菱形 展开
1个回答
展开全部
(1)证明:如图,连接EF.
∵四边形ABCD是梯形,AD∥BC,E、F分别是AB、CD的中点,
∴EF=(AD+BC)/2,EF∥AD∥BC.
∴EF=CG.
∴四边形EGCF是平行四边形.
∴EG=FC且EG∥FC.
∵F是CD的中点,
∴FC=DF.
∴EG=DF且EG∥DF.
∴四边形DEGF是平行四边形.
(2)证明:连接EF,将EF与DG的交点记为点O.
∵∠ADG=2∠ADE,
∴∠ADE=∠EDG.
∵EF∥AD,
∴∠ADE=∠DEO.
∴∠EDG=∠DEO.
∴EO=DO.
∵四边形DEGF是平行四边形,
∴EO=EF/2
DO=DG/2
∴EF=DG,∴平行四边形DEGF是矩形.即四边形DEGF是矩形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询