如图所示,在锐角△ABC中,角A=60°,角ACB=45°,以BC为弦做圆O,交AC于点D,OD与BC交于点E若AB于圆O相切
1个回答
展开全部
解:∵∠ACB=45°,
∴由圆周角定理得:∠BOD=2∠ACB=90°,∴①正确;
∵AB切⊙O于B,
∴∠ABO=90°,
∴∠DOB+∠ABO=180°,
∴DO∥AB,∴②正确;
假如CD=AD,因为DO∥AB,
所以CE=BE,
根据垂径定理得:OD⊥BC,
则∠OEB=90°,
∵已证出∠DOB=90°,
∴此时△OEB不存在,∴③错误;
∵∠DOB=90°,OD=OB,
∴∠ODB=∠OBD=45°=∠ACB,
即∠ODB=∠C,
∵∠DBE=∠CBD,
∴△BDE∽△BCD
∴由圆周角定理得:∠BOD=2∠ACB=90°,∴①正确;
∵AB切⊙O于B,
∴∠ABO=90°,
∴∠DOB+∠ABO=180°,
∴DO∥AB,∴②正确;
假如CD=AD,因为DO∥AB,
所以CE=BE,
根据垂径定理得:OD⊥BC,
则∠OEB=90°,
∵已证出∠DOB=90°,
∴此时△OEB不存在,∴③错误;
∵∠DOB=90°,OD=OB,
∴∠ODB=∠OBD=45°=∠ACB,
即∠ODB=∠C,
∵∠DBE=∠CBD,
∴△BDE∽△BCD
追问
BE:DE是否=根号2
追答
过E作EM⊥BD于M,
则∠EMD=90°,
∵∠ODB=45°,
∴∠DEM=45°=∠EDM,
∴DM=EM,
设DM=EM=a,
则由勾股定理得:DE=
2
a,
∵∠ABC=180°-∠C-∠A=75°,
又∵∠OBA=90°,∠OBD=45°,
∴∠OBC=15°,
∴∠EBM=30°,
在Rt△EMB中BE=2EM=2a,
∴BE/DE=2a/√2a=√2
对不起,刚刚有事。。。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询