这道题怎么做啊?!!???
3个回答
展开全部
f'(x) = e^x+(x-k)e^x = (x-k+1)e^x
x<k-1 f'(x)<0 递减
x>k-1 f'(x)>0递增
(2)
当k-1<0即k<1时 x在[0,1]上递增,Minf(x) = (0-k)e^0 = -k
当k-1>1即k>2时x在[0,1]上递减Minf(x) = (1-k)e^1 = (1-k)
当 0<=k-1<=1时, 即 1<=k<=2时,[0,1]间有一点 x=k-1满足f(x)=0
而f''(x) = (x-k+1)e^x+e^x = (x-k+2)e^x
f''(k-1) = (k-1-k+2)e^(k-1) = e^(k-1)>0
所以在该点有最小值
Minf(x) = (k-1-k)e^(k-1) = -e^(k-1)
综上
当k<1时最小值是 -k
当k>2时最小值是(1-k)
当1<=k<=2时最小值是-e^(k-1)
x<k-1 f'(x)<0 递减
x>k-1 f'(x)>0递增
(2)
当k-1<0即k<1时 x在[0,1]上递增,Minf(x) = (0-k)e^0 = -k
当k-1>1即k>2时x在[0,1]上递减Minf(x) = (1-k)e^1 = (1-k)
当 0<=k-1<=1时, 即 1<=k<=2时,[0,1]间有一点 x=k-1满足f(x)=0
而f''(x) = (x-k+1)e^x+e^x = (x-k+2)e^x
f''(k-1) = (k-1-k+2)e^(k-1) = e^(k-1)>0
所以在该点有最小值
Minf(x) = (k-1-k)e^(k-1) = -e^(k-1)
综上
当k<1时最小值是 -k
当k>2时最小值是(1-k)
当1<=k<=2时最小值是-e^(k-1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询