设数列{an}满足a1=6,a2=4,a3=3,且数列{an+1-an}(n∈N*)是等差数列,求数列{an}的通项公式

设数列{an}满足a1=6,a2=4,a3=3,且数列{an+1-an}(n∈N*)是等差数列,求数列{an}的通项公式.... 设数列{an}满足a1=6,a2=4,a3=3,且数列{an+1-an}(n∈N*)是等差数列,求数列{an}的通项公式. 展开
 我来答
希尔达丶83
2014-09-18 · TA获得超过220个赞
知道答主
回答量:159
采纳率:42%
帮助的人:69.1万
展开全部
∵a1=6,a2=4,a3=3,
∴a2-a1=-2,a3-a2=-1,且-1-(-2)=1,
数列{an+1-an}是-2为首项,1为公差的等差数列,
∴an+1-an=-2+(n-1)×1=n-3,
∴an=(an-an-1)+(an-1-an-2)+(an-2-an-3)+…+(a2-a1)+a1
=(n-4)+(n-5)+(n-6)+…+(-2)+6
=
(n?1)(n?4?2)
2
+6=
1
2
n2?
7
2
n+9
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式