如图,已知P为锐角△ABC内一点,过P分别作BC,AC,AB的垂线,垂足分别为D,E,F,BM为∠ABC的平分线,MP
如图,已知P为锐角△ABC内一点,过P分别作BC,AC,AB的垂线,垂足分别为D,E,F,BM为∠ABC的平分线,MP的延长线交AB于点N.如果PD=PE+PF,求证:C...
如图,已知P为锐角△ABC内一点,过P分别作BC,AC,AB的垂线,垂足分别为D,E,F,BM为∠ABC的平分线,MP的延长线交AB于点N.如果PD=PE+PF,求证:CN是∠ACB的平分线.
展开
3个回答
展开全部
证明:如图,作MM1⊥BC于点M1,MM2⊥AB于点M2,NN1⊥BC于点N1,NN2⊥AC于点N2.
设NP=λNM,
∵NN1∥PD∥MM1,
∴N1D=λN1M1.
若NN1<MM1,如图,作NH⊥MM1,分别交MM1,PD于点H,H1,
则△NPH1∽△NMH,
∴
=
=λ,
∴PH1=λMH,
∴PD=PH1+H1H=λMH+NN1=λ(MM1-NN1)+NN1=λMM1+(1-λ)NN1.
若NN1=MM1,则PD=NN1=MM1=λMM1+(1-λ)NN1.
若NN1>MM1,
同理可证PD=λMM1+(1-λ)NN1.
∵PE∥NN2,∴
=
=1?λ,
∴PE=(1-λ)NN2.
∵PF∥MM2,
∴
=
=λ,
∴PF=λMM2.
又∵PD=PE+PF,
∴λMM1+(1-λ)NN1=λMM2+(1-λ)NN2.
又∵BM是∠ABC的平分线,
∴MM1=MM2,
∴(1-λ)NN1=(1-λ)NN2.
显然λ≠1,即1-λ≠0,
∴NN1=NN2,
∴CN是∠ACB的平分线.
设NP=λNM,
∵NN1∥PD∥MM1,
∴N1D=λN1M1.
若NN1<MM1,如图,作NH⊥MM1,分别交MM1,PD于点H,H1,
则△NPH1∽△NMH,
∴
PH1 |
MH |
NP |
NM |
∴PH1=λMH,
∴PD=PH1+H1H=λMH+NN1=λ(MM1-NN1)+NN1=λMM1+(1-λ)NN1.
若NN1=MM1,则PD=NN1=MM1=λMM1+(1-λ)NN1.
若NN1>MM1,
同理可证PD=λMM1+(1-λ)NN1.
∵PE∥NN2,∴
PE |
NN2 |
PM |
NM |
∴PE=(1-λ)NN2.
∵PF∥MM2,
∴
PF |
MM2 |
NP |
NM |
∴PF=λMM2.
又∵PD=PE+PF,
∴λMM1+(1-λ)NN1=λMM2+(1-λ)NN2.
又∵BM是∠ABC的平分线,
∴MM1=MM2,
∴(1-λ)NN1=(1-λ)NN2.
显然λ≠1,即1-λ≠0,
∴NN1=NN2,
∴CN是∠ACB的平分线.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询