已知函数f(x)=aln(x+1)-ax-x2.(Ⅰ)若x=1为函数f(x)的极值点,求a的值;(Ⅱ)讨论f(x)在定义
已知函数f(x)=aln(x+1)-ax-x2.(Ⅰ)若x=1为函数f(x)的极值点,求a的值;(Ⅱ)讨论f(x)在定义域上的单调性;(Ⅲ)证明:对任意正整数n,ln(n...
已知函数f(x)=aln(x+1)-ax-x2.(Ⅰ)若x=1为函数f(x)的极值点,求a的值;(Ⅱ)讨论f(x)在定义域上的单调性;(Ⅲ)证明:对任意正整数n,ln(n+1)<2+322+432+…+n+1n2.
展开
展开全部
(1)因为f′(x)=
?a?2x,
令f'(1)=0,即
?a?2=0,解得a=-4,
经检验:此时,x∈(0,1),f'(x)>0,f(x)递增;x∈(1,+∞),f'(x)<0,f(x)递减,
∴f(x)在x=1处取极大值.满足题意.
(2)f′(x)=
?a?2x=
,
令f'(x)=0,得x=0,或x=?
,又f(x)的定义域为(-1,+∞)
①当?
≤?1,即a≥0时,若x∈(-1,0),则f'(x)>0,f(x)递增;若x∈(0,+∞),则f'(x)<0,f(x)递减;
②当?1<?
<0,即-2<a<0时,若x∈(-1,?
),则f'(x)<0,f(x)递减;
若x∈(?
,0),则f'(x)>0,f(x)递增;若x∈(0,+∞),则f'(x)<0,f(x)递减;
③当?
=0,即a=-2时,f'(x)≤0,f(x)在(-1,+∞)内递减,
④当?
>0,即a<-2时,若x∈(-1,0),则f'(x)<0,f(x)递减;若x∈(0,?
),
则f'(x)>0,f(x)递增;若x∈(?
,+∞),则f'(x)<0,f(x)递减;
(3)由(2)知当a=1时,f(x)在[0,+∞)上递减,∴f(x)≤f(0),即ln(x+1)≤x+x2,
∵
>0,∴ln(1+
)<
+
=
,i=1,2,3,…,n,
∴ln2+ln
+…+ln
<2+
+…+
,
∴ln(n+1)<2+
+…+
.
a |
x+1 |
令f'(1)=0,即
a |
2 |
经检验:此时,x∈(0,1),f'(x)>0,f(x)递增;x∈(1,+∞),f'(x)<0,f(x)递减,
∴f(x)在x=1处取极大值.满足题意.
(2)f′(x)=
a |
x+1 |
?2x(x+
| ||
x+1 |
令f'(x)=0,得x=0,或x=?
a+2 |
2 |
①当?
a+2 |
2 |
②当?1<?
a+2 |
2 |
a+2 |
2 |
若x∈(?
a+2 |
2 |
③当?
a+2 |
2 |
④当?
a+2 |
2 |
a+2 |
2 |
则f'(x)>0,f(x)递增;若x∈(?
a+2 |
2 |
(3)由(2)知当a=1时,f(x)在[0,+∞)上递减,∴f(x)≤f(0),即ln(x+1)≤x+x2,
∵
1 |
i |
1 |
i |
1 |
i |
1 |
i2 |
i+1 |
i2 |
∴ln2+ln
3 |
2 |
n+1 |
n |
3 |
4 |
n+1 |
n2 |
∴ln(n+1)<2+
3 |
4 |
n+1 |
n2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询