怎么因式分解

 我来答
百度网友c825203
推荐于2016-05-11 · TA获得超过407个赞
知道小有建树答主
回答量:947
采纳率:0%
帮助的人:464万
展开全部
提公因式法

各项都含有的公共的因式叫做这个多项式各项的公因式。
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。
如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。
口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。
例如:-am+bm+cm=-m(a-b-c);
a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。
注意:把2a^2+1/2变成2(a^2+1/4)不叫提公因式

⑵公式法

如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。
平方差公式:a^2-b^2=(a+b)(a-b);
完全平方公式:a^2±2ab+b^2=(a±b)^2;
注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。
立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2);
立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2);
完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.
公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
例如:a^2 +4ab+4b^2 =(a+2b)^2。
(3)分解因式技巧
1.分解因式与整式乘法是互为逆变形。
2.分解因式技巧掌握:
①等式左边必须是多项式;
②分解因式的结果必须是以乘积的形式表示;
③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;
④分解因式必须分解到每个多项式因式都不能再分解为止。
注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。
3.提公因式法基本步骤:
(1)找出公因式;
(2)提公因式并确定另一个因式:
①第一步找公因式可按照确定公因式的方法先确定系数在确定字母;
②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;
③提完公因式后,另一因式的项数与原多项式的项数相同。
[编辑本段]
竞赛用到的方法

⑶分组分解法

分组分解是解方程的一种简洁的方法,我们来学习这个知识。
能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。
比如:
ax+ay+bx+by
=a(x+y)+b(x+y)
=(a+b)(x+y)
我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。
同样,这道题也可以这样做。
ax+ay+bx+by
=x(a+b)+y(a+b)
=(a+b)(x+y)
几道例题:
1. 5ax+5bx+3ay+3by
解法:=5x(a+b)+3y(a+b)
=(5x+3y)(a+b)
说明:系数不一样一样可以做分组分解,和上面一样,把5ax 和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。
2. x^3-x^2+x-1
解法:=(x^3-x^2)+(x-1)
=x^2(x-1)+ (x-1)
=(x-1)(x2+1)
利用二二分法,提公因式法提出x2,然后相合轻松解决。
3. x2-x-y2-y
解法:=(x2-y2)-(x+y)
=(x+y)(x-y)-(x+y)
=(x+y)(x-y-1)
利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决。

⑷十字相乘法

这种方法有两种情况。
①x^2+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(p+q)x+pq=(x+p)(x+q) .
②kx^2+mx+n型的式子的因式分解
如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d).
图示如下:
×
c d
例如:因为
1 -3
×
7 2
-3×7=-21,1×2=2,且2-21=-19,
所以7x^2-19x-6=(7x+2)(x-3).
十字相乘法口诀:首尾分解,交叉相乘,求和凑中

⑸拆项、添项法

这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项
追问
姐姐你好
小小柠檬2015
2015-02-25 · TA获得超过473个赞
知道小有建树答主
回答量:720
采纳率:0%
帮助的人:178万
展开全部
把一个多项式化为几个最简整式的积的形式,这种变形叫做因式分解,也叫作分解因式。在数学求根作图方面有很广泛的应用。
原则:
1、分解必须要彻底(即分解之后因式均不能再做分解)
2、结果最后只留下小括号
3、结果的多项式首项为正。 在一个公式内把其公因子抽出,例子:
其中,是公因子。因此,因式分解后得到的答案是:公式重组
透过公式重组,然后再抽出公因子。
好多类型的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式