用数学归纳法证明:·1-1/2+1/3-1/4...+1/2n-1-1/2n=1/n+1+1/n+2+...1/2n时,在作出归纳假设后,
2个回答
展开全部
要证明该式,只需证明两点:一、n=1时命题成立;二、若n=k时命题成立,则n=k+1时命题同样成立。
显然当n=1时,1-1/2=1/2成立。
若n=k时命题成立,按题意,1-1/2+1/3-1/4…+1/(2k-1)-1/2k=1/(k+1)+…+1/2k。则当n=k+1时,左式变为1-1/2+1/3-1/4…+1/(2k+1)-1/(2k+2)。两式相减,得[1-1/2+1/3-1/4…+1/(2k+1)-1/(2k+2)]-[1-1/2+1/3-1/4…+1/(2k-1)-1/2k]=1/(2k+1)-1/(2k+2),因此1-1/2+1/3-1/4…+1/(2k+1)-1/(2k+2)=[1/(k+1)+…+1/2k]+1/(2k+1)-1/(2k+2)=1/(k+1)+…+1/2k+1/(2k+1)+1/(2k+2)-1/(k+1)=1/(k+2)+…+1/(2k+2)。
显然当n=1时,1-1/2=1/2成立。
若n=k时命题成立,按题意,1-1/2+1/3-1/4…+1/(2k-1)-1/2k=1/(k+1)+…+1/2k。则当n=k+1时,左式变为1-1/2+1/3-1/4…+1/(2k+1)-1/(2k+2)。两式相减,得[1-1/2+1/3-1/4…+1/(2k+1)-1/(2k+2)]-[1-1/2+1/3-1/4…+1/(2k-1)-1/2k]=1/(2k+1)-1/(2k+2),因此1-1/2+1/3-1/4…+1/(2k+1)-1/(2k+2)=[1/(k+1)+…+1/2k]+1/(2k+1)-1/(2k+2)=1/(k+1)+…+1/2k+1/(2k+1)+1/(2k+2)-1/(k+1)=1/(k+2)+…+1/(2k+2)。
展开全部
1-1/2+1/3-1/4...+1/2n-1-1/2n=1/n+1+1/n+2+...1/2n
当n=k时,等式
1-1/2+1/3-1/4...+1/(2k-1)-1/(2k)=1/(k+1)+1/(k+2)+...1/(2k)成立
那么当n=k+1时,需证明
1-1/2+1/3-1/4...+1/(2k-1)-1/(2k)+1/(2k+1)-1/(2k+2)
=1/(k+2)+1/(k+3)+........+1/(2k)+1/(2k+1)+1/(2k+2)
当n=k时,等式
1-1/2+1/3-1/4...+1/(2k-1)-1/(2k)=1/(k+1)+1/(k+2)+...1/(2k)成立
那么当n=k+1时,需证明
1-1/2+1/3-1/4...+1/(2k-1)-1/(2k)+1/(2k+1)-1/(2k+2)
=1/(k+2)+1/(k+3)+........+1/(2k)+1/(2k+1)+1/(2k+2)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询