关于矩形的题,求解答
如图,在矩形ABCD中,点E、F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将三角形CEF沿EF折叠,使点C落在直线EB′与AD的交点C′处,...
如图,在矩形ABCD中,点E、F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将三角形CEF沿EF折叠,使点C落在直线EB′与AD的交点C′处,则BC:AB的值为多少
展开
展开全部
解:连接CC′
∵将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处
∴EC=EC′
∴∠EC′C=∠ECC′
∵∠DC′C=∠ECC′
∴∠EC′C=∠DC′C
∴得到CC′是∠EC'D的平分线
∵∠CB′C′=∠D=90°
∴CB′=CD
又∵AB′=AB
所以B′是对角线AC中点
即AC=2AB
所以∠ACB=30°
∴cot∠ACB=cot30°=BC/AB=√3
BC:AB的值为:√3
很高兴为您解答,祝你学习进步!
有不明白的可以追问!如果您认可我的回答,请选为满意答案,谢谢!
∵将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处
∴EC=EC′
∴∠EC′C=∠ECC′
∵∠DC′C=∠ECC′
∴∠EC′C=∠DC′C
∴得到CC′是∠EC'D的平分线
∵∠CB′C′=∠D=90°
∴CB′=CD
又∵AB′=AB
所以B′是对角线AC中点
即AC=2AB
所以∠ACB=30°
∴cot∠ACB=cot30°=BC/AB=√3
BC:AB的值为:√3
很高兴为您解答,祝你学习进步!
有不明白的可以追问!如果您认可我的回答,请选为满意答案,谢谢!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询