请问这几道高数题的极限怎么算?
2个回答
展开全部
(1)
lim(x->0) sin(x^n)/ (sinx)^m
=lim(x->0) x^n/ x^m
=lim(x->0) x^(n-m)
=0 ; n>m
=1 ; n=m
不存在 ; n<m
(2)
lim(x->∞) [(x-1)/x]^[1/sin(1/x)]
=lim(x->∞) (1 - 1/x )^[1/sin(1/x)]
=lim(x->∞) (1 - 1/x )^x
=e^(-1)
(3)
lim(x->1) arcsin(1-x)/ lnx
=lim(x->1) arcsin(1-x)/ ln[1+(x-1)]
=lim(x->1) (1-x)/ (x-1)
=-1
(4)
x->0
分子
1-cosx = (1/2)x^2+o(x^2)
分母
1-cos√x = (1/2)x +o(x)
x(1-cos√x) = (1/2)x^2 +o(x^2)
lim(x->0) [ 1- √cosx]/[x(1-cos√x)]
=lim(x->0) ( 1- cosx)/{ [x(1-cos√x)] .[ 1+ √cosx] }
=(1/2)lim(x->0) ( 1- cosx)/{ [x(1-cos√x)]
=(1/2)lim(x->0) (1/2)x^2/[ (1/2)x^2 ]
=1/2
lim(x->0) sin(x^n)/ (sinx)^m
=lim(x->0) x^n/ x^m
=lim(x->0) x^(n-m)
=0 ; n>m
=1 ; n=m
不存在 ; n<m
(2)
lim(x->∞) [(x-1)/x]^[1/sin(1/x)]
=lim(x->∞) (1 - 1/x )^[1/sin(1/x)]
=lim(x->∞) (1 - 1/x )^x
=e^(-1)
(3)
lim(x->1) arcsin(1-x)/ lnx
=lim(x->1) arcsin(1-x)/ ln[1+(x-1)]
=lim(x->1) (1-x)/ (x-1)
=-1
(4)
x->0
分子
1-cosx = (1/2)x^2+o(x^2)
分母
1-cos√x = (1/2)x +o(x)
x(1-cos√x) = (1/2)x^2 +o(x^2)
lim(x->0) [ 1- √cosx]/[x(1-cos√x)]
=lim(x->0) ( 1- cosx)/{ [x(1-cos√x)] .[ 1+ √cosx] }
=(1/2)lim(x->0) ( 1- cosx)/{ [x(1-cos√x)]
=(1/2)lim(x->0) (1/2)x^2/[ (1/2)x^2 ]
=1/2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询