3个回答
展开全部
解析:级数Σ(n=2…∞){1/[n(n+2)]}的前n项和为
Σ(k=2…n+1){1/[k(K+2)]}
=(1/2)Σ(k=2…n+1)[1/k-1/(k+2)]
=(1/2){(1/2-1/4)+(1/3-1/5)
+(1/4-1/6)+(1/5-1/7)
+…+[1/n-1/(n+2)]+[1/(n+1)-1/(n+3)]}
=(1/2)[1/2+1/3-1/(n+2)-1/(n+3)]
=5/12-(2n+5)/[(n+2)(n+3)] .
Σ(k=2…n+1){1/[k(K+2)]}
=(1/2)Σ(k=2…n+1)[1/k-1/(k+2)]
=(1/2){(1/2-1/4)+(1/3-1/5)
+(1/4-1/6)+(1/5-1/7)
+…+[1/n-1/(n+2)]+[1/(n+1)-1/(n+3)]}
=(1/2)[1/2+1/3-1/(n+2)-1/(n+3)]
=5/12-(2n+5)/[(n+2)(n+3)] .
更多追问追答
追问
为什么答案是5/12
追答
若答案是5/12,则题目中的“前n项和”应改为“和”,因为当n趋向∞时,(2n+5)/[(n+2)(n+3)]趋向0 .
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/n(n+2) =(1/2) [1/n - 1/(n+2)]
原级数的前n项和
= (1/2)[1/2+1/3+...+1/(n+1) - 1/4-1/5-...-1/(n+3)]
= (1/2)[1/2+1/3-1/(n+2)-1/(n+3)]
= 5/12 - (2n+5)/[2(n+2)(n+3)]
原级数的前n项和
= (1/2)[1/2+1/3+...+1/(n+1) - 1/4-1/5-...-1/(n+3)]
= (1/2)[1/2+1/3-1/(n+2)-1/(n+3)]
= 5/12 - (2n+5)/[2(n+2)(n+3)]
更多追问追答
追问
为什么答案是5/12
追答
n-oo时,该级数 = 5/12。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2020-05-02
展开全部
1/2(1/2-1/4+1/3-1/5+1/4-1/6+...)=5/12
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询