在三角形abc中,sina等于5/13,cosb等于3/5,求cosc的值

 我来答
茹翊神谕者

2023-02-07 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1540万
展开全部

简单分析一下,答案如图所示

花知乌雅寅
2020-05-19 · TA获得超过1043个赞
知道小有建树答主
回答量:1394
采纳率:100%
帮助的人:6.4万
展开全部
因为,sinA=5/13,则cosA=12/13或cosA=-12/13
cosB=3/5,sinB=4/5
∠A+∠B+∠C=180,所以∠C=180-(∠A+∠B)
所以cosC=cos(180-(A+B))=-cos(A+B)=-(cosAcosB-sinAsinB)
又sin^2(A)+cos^2(B)=1,所以cosA=±√(1-sin^2(A))=±√(1-(5/13)^2)=±12/13;
同样的道理:sinB=±√(1-cos^2(B))=±√(1-(3/5)^2)=±4/5,在三角形中因cosB=3/5,所以B<90
所以sinB=4/5
cosC=-cos(A+B)=-(cosAcosB-sinAsinB)=-(±12/13*3/5-5/13*4/5)
所以cosC=56/65或cosC=-15/65
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式