列方程的步骤
4个回答
展开全部
列方程解决问题的一般步骤:
(1)弄清题意,设未知数,一般用x表示;
(2)找出题中数量间的相等关系,列出包含x的等式;
(3)解方程;
(4)检验,写出答案.
简易方程知识点
1、(P45)在含有字母的式子里,字母中间的乘号可以记作'·',也可 以省略不写。
加号、减号除号以及数与数之间的乘号不能省略。
2、a×a 可以写作 a·a 或 a ,a 读作 a 的平方。 2a 表示 a+a
3、方程:含有未知数的等式称为方程。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
4、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0 除外),等式依然成立。、
5、 个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数×因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
6、所有的方程都是等式,但等式不一定都是方程。
7、方程的检验过程:方程左边=……
8、方程的解是一个数;
解方程式一个计算过程。=方程右边
所以,X=…是方程的解。
方程(equation)是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。
通过方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多种形式,如一元一次方程、二元一次方程、一元二次方程等等,还可组成方程组求解多个未知数。
在数学中,一个方程是一个包含一个或多个变量的等式的语句。 求解等式包括确定变量的哪些值使得等式成立。 变量也称为未知数,并且满足相等性的未知数的值称为等式的解。
(1)弄清题意,设未知数,一般用x表示;
(2)找出题中数量间的相等关系,列出包含x的等式;
(3)解方程;
(4)检验,写出答案.
简易方程知识点
1、(P45)在含有字母的式子里,字母中间的乘号可以记作'·',也可 以省略不写。
加号、减号除号以及数与数之间的乘号不能省略。
2、a×a 可以写作 a·a 或 a ,a 读作 a 的平方。 2a 表示 a+a
3、方程:含有未知数的等式称为方程。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
4、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0 除外),等式依然成立。、
5、 个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数×因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
6、所有的方程都是等式,但等式不一定都是方程。
7、方程的检验过程:方程左边=……
8、方程的解是一个数;
解方程式一个计算过程。=方程右边
所以,X=…是方程的解。
方程(equation)是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。
通过方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多种形式,如一元一次方程、二元一次方程、一元二次方程等等,还可组成方程组求解多个未知数。
在数学中,一个方程是一个包含一个或多个变量的等式的语句。 求解等式包括确定变量的哪些值使得等式成立。 变量也称为未知数,并且满足相等性的未知数的值称为等式的解。
展开全部
在数学的学习中,有些学生觉得列方程很难。下面是列方程的诀窍和方法,希望能够给大家数学的学习带来帮助。
列方程的诀窍有哪些
1列方程的诀窍
1、在含有字母的式子里,字母中间的乘号可以记作"·",也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。
2、a×a 可以写作 a·a 或 a ,a 读作 a 的平方。 2a 表示 a+a
3、方程:含有未知数的等式称为方程。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
4、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0 除外),等式依然成立。
5、个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数×因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
6、检验也是列方程解应用题中必不可少的
检验并写出答案.检验时,一是要将所求得的未知数的值代入原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解。将求得的方程的解代入原方程中检验。如果左右两边相等,说明方程解正确了。
2解方程的依据
1、移项变号:把方程中的某些项带着前面的符号从方程的一边移到另一边,并且加变减,减变加,乘变除以,除以变乘;
2、等式的基本性质
①等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。
②等式的两边同时乘或除以同一个不为0的数,所得的结果仍是等式。
③若a=b,则b=a(等式的对称性)。
④若a=b,b=c则a=c(等式的传递性)。
列方程的诀窍有哪些
1列方程的诀窍
1、在含有字母的式子里,字母中间的乘号可以记作"·",也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。
2、a×a 可以写作 a·a 或 a ,a 读作 a 的平方。 2a 表示 a+a
3、方程:含有未知数的等式称为方程。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
4、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0 除外),等式依然成立。
5、个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数
减法:差=被减数-减数 被减数=差+减数 减数=被减数-差
乘法:积=因数×因数 一个因数=积÷另一个因数
除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
6、检验也是列方程解应用题中必不可少的
检验并写出答案.检验时,一是要将所求得的未知数的值代入原方程,检验方程的解是否正确;二是检查所求得的未知数的值是否符合题意,不符合题意的要舍去,保留符合题意的解。将求得的方程的解代入原方程中检验。如果左右两边相等,说明方程解正确了。
2解方程的依据
1、移项变号:把方程中的某些项带着前面的符号从方程的一边移到另一边,并且加变减,减变加,乘变除以,除以变乘;
2、等式的基本性质
①等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。
②等式的两边同时乘或除以同一个不为0的数,所得的结果仍是等式。
③若a=b,则b=a(等式的对称性)。
④若a=b,b=c则a=c(等式的传递性)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
列方程解决问题的一般步骤,一弄清题意设未知数,一般用x表示,二找出题中数量间的相等关系,列出包含x等式
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
首先找等量关系,然后列出方程设未知数,最后解出方程。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |