高等代数的一个题目:设n阶矩阵A,B满足BA=0,A2=A 证明?

 我来答
采拉思旧马19
2020-08-10 · TA获得超过2600个赞
知道大有可为答主
回答量:4843
采纳率:49%
帮助的人:159万
展开全部



证:首先由AB=A+B得:

AB-A-B+E=E

则(A-E)(B-E)=E,

从而A-E可逆

再由(A-E)(B-E)=E=(B-E)(A-E),

知AB=BA

线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵,A经过有限次的初等变换得到B。

扩展资料

性质

矩阵A和A等价(反身性);

矩阵A和B等价,那么B和A也等价(等价性);

矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性);

矩阵A和B等价,那么IAI=KIBI。(K为非零常数)

具有行等价关系的矩阵所对应的线性方程组有相同的解

对于相同大小的两个矩形矩阵,它们的等价性也可以通过以下条件来表征:

(1)矩阵可以通过基本行和列操作的而彼此变换。

(2)当且仅当它们具有相同的秩时,两个矩阵是等价的。






推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式