设ω>0,若函数f(x)=sinωx/2cosωx/2在区间[-π/3,π/3]上单调递增,则ω的
设ω>0,若函数f(x)=sinωx/2cosωx/2在区间[-π/3,π/3]上单调递增,则ω的取值范围是多少?(写出详细答案)...
设ω>0,若函数f(x)=sinωx/2cosωx/2在区间[-π/3,π/3]上单调递增,则ω的取值范围是多少?(写出详细答案)
展开
展开全部
设ω>0,若函数f(x)=sinωx/2cosωx/2在区间[-π/3,π/3]上单调递增,则ω的取值范围是多少?
解析:∵ω>0,若函数f(x)=sinωx/2cosωx/2在区间[-π/3,π/3]上单调递增,
f(x)=sinωx/2cosωx/2=1/2sin(ωx)
单调递增区:
2kπ-π/2<=ωx<=2kπ+π/2==>2kπ/ω-π/(2ω)<=x<=2kπ/ω+π/(2ω)(k∈Z)
令-π/(2ω)<=-π/3==>ω<=3/2
∴ω的取值范围是0<ω<=3/2
解析:∵ω>0,若函数f(x)=sinωx/2cosωx/2在区间[-π/3,π/3]上单调递增,
f(x)=sinωx/2cosωx/2=1/2sin(ωx)
单调递增区:
2kπ-π/2<=ωx<=2kπ+π/2==>2kπ/ω-π/(2ω)<=x<=2kπ/ω+π/(2ω)(k∈Z)
令-π/(2ω)<=-π/3==>ω<=3/2
∴ω的取值范围是0<ω<=3/2
追问
为什么要令-π/2ω<=-π/3?
追答
∵函数f(x)=sinωx/2cosωx/2在区间[-π/3,π/3]上单调递增
其含义是f(x)的单调增区间至少为[-π/3,π/3],
当单调增区间为[-π/3,π/3]时,X=-π/3为最小值点,x=π/3为最大值
当单调增区间>[-π/3,π/3]时,f(x)最小值点xπ/3
∵x=-π/(2ω)是f(x)的最小值点
∴令-π/(2ω)ω<=3/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询