如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=a,AC=2,AA1=1,点D在棱B1C1上且B1D:DC1=1:3(1)证明
如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=a,AC=2,AA1=1,点D在棱B1C1上且B1D:DC1=1:3(1)证明:无论a为任何正数,均有BD...
如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=a,AC=2,AA1=1,点D在棱B1C1上且B1D:DC1=1:3(1)证明:无论a为任何正数,均有BD⊥A1C;(2)当a为何值时,二面角B-A1D-B1为60°.
展开
1个回答
展开全部
(1)以A为坐标原点,建立空间直角坐标系A-xyz(如图),
D(
a,
,1),A1(0,0,1),B(a,0,0),C(0,2,0),
=(?
,
,1),
=(0,2,-1),
∵
?
=(?
,
,1)?(0,2,-1)=0,∴
⊥
,即BD⊥A1C.
故无论a为任何正数,均有BD⊥A1C.
(2)
=(
a,
D(
3 |
4 |
1 |
2 |
BD |
a |
4 |
1 |
2 |
A1C |
∵
BD |
A1C |
a |
4 |
1 |
2 |
BD |
A1C |
故无论a为任何正数,均有BD⊥A1C.
(2)
A1D |
3 |
4 |