2018-11-24
虽然Python的开发效率较高,但是早年的Python的运行速度相对于其他语言要慢一些也是被很多程序员诟病Python的主要原因,但最近几年PyPy解释器在不断的提高着Python的运行速度 ,通过PyPy运行的程序,在某些场景下速度直接逼近C语言,相信再过几年,Python的运行速度将不再是问题。另外,由于近些年CPU处理速度的快速发展,编程语言本身的快慢在大多数业务场景下已不再被做为主要考量(除了对响应速度极为敏感的业务,如搜素),因此,可以看出Python在追求运行速度快上也是有所考虑的。想学的童鞋可以加企鹅裙前三位是227,中间是435,后三位是450可以 视频资料免费分享交流经验和讲解行情
最后一个就是Python的功能,由于环境机制和语言特性,让Python强大起来是分分钟的事情,只要会配置源,会配置环境,开发就会变得非常简单了,这是导致Python大火的另一个主要原因之一,Python的标准库和第三方库强大到你无法想象,无论你想从事任何方向的技术编程,你几乎都能找到相应的库支持,以下仅举几个栗子:
WEB开发:最火的Python web框架Django, 支持异步高并发的Tornado框架,短小精悍的flask,bottle, Django官方的标语把Django定义为the framework for perfectionist with deadlines(大意是一个为完全主义者开发的高效率web框架)
网络编程:支持高并发的Twisted网络框架, py3引入的asyncio使异步编程变的非常简单
爬虫:爬虫领域,Python几乎是霸主地位,Scrapy\Request\BeautifuSoap\urllib等,想爬啥就爬啥
云计算:目前最火最知名的云计算框架就是OpenStack,Python现在的火,很大一部分就是因为云计算
人工智能:谁会成为AI 和大数据时代的第一开发语言?这本已是一个不需要争论的问题。如果说五年前,Matlab、Scala、R、Java 和 Python还各有机会,局面尚且不清楚,那么五年之后,趋势已经非常明确了,特别是前段时间 Facebook 开源了 PyTorch 之后,Python 作为 AI 时代头牌语言的位置基本确立,未来的悬念仅仅是谁能坐稳第二把交椅。
自动化运维:问问中国的每个运维人员,运维人员必须会的语言是什么?10个人相信会给你一个相同的答案,它的名字叫Python
金融分析:我有个朋友之前在金融行业,10年的时候,他们公司写的好多分析程序、高频交易软件就是用的Python,到目前,Python是金融分析、量化交易领域里用的最多的语言
科学运算:你知道么,97年开始,NASA就在大量使用Python在进行各种复杂的科学运算,随着NumPy, SciPy, Matplotlib, Enthought librarys等众多程序库的开发,使的Python越来越适合于做科学计算、绘制高质量的2D和3D图像。和科学计算领域最流行的商业软件Matlab相比,Python是一门通用的程序设计语言,比Matlab所采用的脚本语言的应用范围更广泛
游戏开发:在网络游戏开发中Python也有很多应用。相比Lua or C++,Python 比 Lua 有更高阶的抽象能力,可以用更少的代码描述游戏业务逻辑,与 Lua 相比,Python 更适合作为一种 Host 语言,即程序的入口点是在 Python 那一端会比较好,然后用 C/C++ 在非常必要的时候写一些扩展。Python 非常适合编写 1 万行以上的项目,而且能够很好地把网游项目的规模控制在 10 万行代码以内。另外据我所知,知名的游戏<文明>就是用Python写的。
列举这么多之后,你会发现,Python几乎在上述每个领域都做的非常优秀,这是一门真正意义上的全栈语言,即使目前世界上使用最广泛的Java语言,在很多方面与Python相比也逊色很多!我目前还看不到有哪门语言,能同时在如此多的领域能做出这些成绩。所以,大胆来吧,不会错。
附上一张今年语言排行榜。
最后附Python岗位最新薪资
目前应用最多的:全栈开发、数据分析、运维开发,可以看到,Python工程师的起薪大多数在15K起,3年以上工程师的起薪大多超过20K。
Python的应用方向
1. 常规软件开发
Python支持函数式编程和OOP面向对象编程,能够承担任何种类软件的开发工作,因此常规的软件开发、脚本编写、网络编程等都属于标配能力。
2. 科学计算
随着NumPy, SciPy, Matplotlib, Enthought librarys等众多程序库的开发,Python越来越适合于做科学计算、绘制高质量的2D和3D图像。和科学计算领域最流行的商业软件Matlab相比,Python是一门通用的程序设计语言,比Matlab所采用的脚本语言的应用范围更广泛,有更多的程序库的支持。虽然Matlab中的许多高级功能和toolbox目前还是无法替代的,不过在日常的科研开发之中仍然有很多的工作是可以用Python代劳的。
3. 自动化运维
这几乎是Python应用的自留地,作为运维工程师首选的编程语言,Python在自动化运维方面已经深入人心,比如Saltstack和Ansible都是大名鼎鼎的自动化平台。
4. 云计算
开源云计算解决方案OpenStack就是基于Python开发的,搞云计算的同学都懂的。
5. WEB开发
基于Python的Web开发框架不要太多,比如耳熟能详的Django,还有Tornado,Flask。其中的Python+Django架构,应用范围非常广,开发速度非常快,学习门槛也很低,能够帮助你快速的搭建起可用的WEB服务。
6. 网络爬虫
也称网络蜘蛛,是大数据行业获取数据的核心工具。没有网络爬虫自动地、不分昼夜地、高智能地在互联网上爬取免费的数据,那些大数据相关的公司恐怕要少四分之三。能够编写网络爬虫的编程语言有不少,但Python绝对是其中的主流之一,其Scripy爬虫框架应用非常广泛。
7. 数据分析
在大量数据的基础上,结合科学计算、机器学习等技术,对数据进行清洗、去重、规格化和针对性的分析是大数据行业的基石。Python是数据分析的主流语言之一。
8. 人工智能
Python在人工智能大范畴领域内的机器学习、神经网络、深度学习等方面都是主流的编程语言,得到广泛的支持和应用。
当然,除了以上的主流和前沿领域,Python还在其他传统或特殊行业起着重要的作用。
通过百度大概了解了下python的应用领域,如:系统运维、科学计算、人工智能、网络编程(如搜索引擎、爬虫、服务器编程)、web开发、云计算系统、图形化、教育等等等…………好吧,一堆看不懂的,只注意到了“爬虫”、“科学计算”和“图形化”三个关键词,简单理解就是爬数据、分析挖掘和图形展示。
Python的应用
在数据爬虫方面,利用rullib、requests、BeautifulSoup、re、Scrapy等模块进行爬取想要的网站资料,如搜房、淘宝、京东、微信、今日头条、中国知网、新浪、贴吧、金融界、电影论坛等等,真正的实现所见即所得。
在数据处理方面,利用Pandas、Numpy、Scipy、PyMVPA等模块可以帮助你在计算巨型数组、矢量分析、神经网络等方面高效率完成工作。尤其是在教育科研方面,可以发挥出独特的优势。
在数据展示方面,利用ReportLab 、matplotlib、basemap 等模块可以生成相应的统计图表或地图等。另外,利用PyOpenGl模块,可以非常迅速的编写出三维场景。
总之是集数据采集、分析、挖掘及展示等功能于一体,典型的万金油。另外,如果是专业学习python,真是工资高得让人羡慕,具体多少就不说了,感兴趣的可以去查查。
2013-06-23
python可以做的事情太多了。机器学习、爬虫、自动化自测、运维、web开发等。
python语言简洁清爽,开发效率高。十分接近自然语言。并且第三方库非常丰富。基本上很少的代码就可以实现很多的功能。
现在很多大学也都在开设python课程了。我司这个暑假期间就来了一个小伙专门实习Python的。数学&&算法比较牛逼的可以考虑机器学习、人工智能领域。工资是相当的高啊。加油