求函数的微分

y=ln(sinx)y=tan^33x... y=ln(sinx)

y=tan^3 3x
展开
 我来答
641038654

2015-04-22 · TA获得超过10.9万个赞
知道顶级答主
回答量:7.1万
采纳率:88%
帮助的人:7485万
展开全部
在数学中,微分是对函数的局部变化率的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。

定义
设函数y = f(x)在x0的邻域内有定义,x0及x0 + Δx在此区间内。如果函数的增量Δy = f(x0 + Δx) - f(x0)可表示为 Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小,注:o读作奥密克戎,希腊字母,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy = AΔx。函数的微分是函数增量的主要部分,且是Δx的线性函数,故说函数的微分是函数增量的线性主部(△x→0)。
通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。
当自变量X改变为X+△X时,相应地函数值由f(X)改变为f(X+△X),如果存在一个与△X无关的常数A,使f(X+△X)-f(X)和A·△X之差是△X→0关于△X的高阶无穷小量,则称A·△X是f(X)在X的微分,记为dy,并称f(X)在X可微。一元微积分中,可微可导等价。记A·△X=dy,则dy=f′(X)dX。例如:d(sinX)=cosXdX。
微分概念是在解决直与曲的矛盾中产生的,在微小局部可以用直线去微分近似替代曲线,它的直接应用就是函数的线性化。微分具有双重意义:它表示一个微小的量,因此就可以把线性函数的数值计算结果作为本来函数的数值近似值,这就是运用微分方法进行近似计算的基本思想。
念一份温暖ss
2015-11-05 · TA获得超过156个赞
知道答主
回答量:169
采纳率:0%
帮助的人:49.9万
展开全部
首先看一下微分定义:设函数y=f(x)在点x处导数存在,则此导数f'(x)与自变量Δx的积f'(x)Δx称为函数y=f(x)在点x处的微分,记作dy或df(x),即:dy=f'(x)Δx (1)
由上可见,函数的微分有两个特性:
1、它是自变量改变量Δx的线形函数(以f'(x)为系数);
2、它与函数的改变量之差Δy-dy=αΔx是一个比Δx高阶的无穷小(当Δx→0时),当f'(x)≠0时,它是Δy的主要部分,所以也称微分dy是改变量Δy的线性主部.由此得到一个很有用的近似公式:只要Δx很小,就有Δy≈dy,即
Δy≈f'(x)Δx.
通常,把自变量的增量Δx称为自变量的微分,记作dx,即Δx=dx,于是(1)可写为dy=f'(x)dx
由此可得dy/dx=f'(x),即函数微分与自变量微分之商等于该函数的导数,因此导数也叫微商.
当函数y=f(x)在点x处的微分存在时,也称函数在点x处可微,因此函数的可微和可导是等价的.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
买昭懿007
2015-04-22 · 知道合伙人教育行家
买昭懿007
知道合伙人教育行家
采纳数:35959 获赞数:160764
毕业于山东工业大学机械制造专业 先后从事工模具制作、设备大修、设备安装、生产调度等工作

向TA提问 私信TA
展开全部

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式