鸽巢原理
鸽巢原理也叫抽屉原理,是Ramsey定理的特例。它的简单形式是 :把n+1个物体放入n个盒子里,则至少有一个盒子里含有两个或两个以上的物体 。
让我来举个例子:有一个晚上你的房间的电灯忽然间坏了,伸手不见五指,而你又要出去,于是你就摸床底下的袜子。你有三双分别为红、白、蓝颜色的袜子,可是你平时做事随便,一脱袜就乱丢,在黑暗中不能知道哪一双是颜色相同的。你想拿最少数目的袜子出去,在外面借街灯配成同颜色的一双。这最少数目应该是多少?如果你懂得鸽笼原理,你就会知道只需拿出去四只袜子就行了。为什么呢?因为如果我们有三个涂上红、白、蓝的盒子,里面各放进相对颜色的袜子,只要我们抽出4只袜子一定有一个盒子是空的,那么这空的盒子取出的袜子是可以拿来穿。
或者是一个袋子装了100个苹果,100个香蕉,100个橘子,100个梨子。如果我们每分钟从袋子里取出1种水果,那么需要多少时间我就能肯定至少已经拿出1打相同种类的水果。假如有n+1个元素放到n个集合中,其中必定有一个集合里至少有两个元素。
2024-09-05 广告
1.鸽巢原理一般指抽屉原理,是组合数学中一个重要的原理。抽屉原理的含义:如果每个抽屉代表一个集合,每一个苹果代表一个元素,假如有n+1个元素放到n个集合中,其中必定有一个集合里至少有两个元素。
2.鸽巢原理的现象:桌上有10个苹果,把这10个苹果放到9个抽屉里,无论怎样放,都会发现至少会有一个抽屉里放不少于两个苹果。
3.运用鸽巢原理的核心是分析清楚问题中哪个是物件,哪个是抽屉。
4.比如属相有12个,将属相看成12个抽屉,那么任意37个人中,至少有一
个属相是不少于4个人。
鸽巢原理具体解释:假设我们有 10 只鸽子,但只有 9 个鸽笼可以放入它们。由于我们的鸽子比鸽笼多,因此至少其中一个洞必须至少有 2 只鸽子。这就是鸽巢原理。每当我们要放入孔中的物品多于孔时,至少一个孔必须包含不止一件物品。
假设鸽子的数为n,鸽笼的个数为k,那么上述原理转换下就是:鸽巢原理
假设你有 k 个鸽笼和 n 只鸽子要放在里面。如果 n > k (鸽子数 > 鸽笼数) 那么至少一个鸽舍包含至少两只鸽子。
其中,鸽子通常是数字、物体乃至一个对象,而鸽笼则是存储数组、物体或者对象的一个容器。