展开全部
令√x=t,x=t^2,dx=2tdt
x=1,t=1,x=4,t=2
原式=∫[1,2] arctantdt^2
=t^2arctant[1,2]-∫[1,2] t^2darctant
=4arctan4-arctan1-∫[1,2] t^2/(1+t^2)dt
=4arctan4-arctan1-∫[1,2] [1-1/(1+t^2)]dt
=4arctan4-arctan1-[t-arctant][1,2]
=4arctan4-arctan1-(2-arctan2-1+arctan1)
=4arctan4-1+arctan2
x=1,t=1,x=4,t=2
原式=∫[1,2] arctantdt^2
=t^2arctant[1,2]-∫[1,2] t^2darctant
=4arctan4-arctan1-∫[1,2] t^2/(1+t^2)dt
=4arctan4-arctan1-∫[1,2] [1-1/(1+t^2)]dt
=4arctan4-arctan1-[t-arctant][1,2]
=4arctan4-arctan1-(2-arctan2-1+arctan1)
=4arctan4-1+arctan2
追答
噢,代入值错误了
令√x=t,x=t^2,dx=2tdt
x=1,t=1,x=4,t=2
原式=∫[1,2] arctantdt^2
=t^2arctant[1,2]-∫[1,2] t^2darctant
=4arctan2-arctan1-∫[1,2] t^2/(1+t^2)dt
=4arctan2-arctan1-∫[1,2] [1-1/(1+t^2)]dt
=4arctan2-arctan1-[t-arctant][1,2]
=4arctan2-arctan1-(2-arctan2-1+arctan1)
=4arctan2-1+arctan2-2arctan1
=5arctan2-1-π/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询