线性代数。,这里的通解是怎么计算出来的??求解释??
1个回答
展开全部
系数矩阵 A=
[1 0 1 -1 -3]
[1 2 -1 0 -1]
[4 6 -2 -4 3]
[2 -2 4 -7 4]
行初等变换为
[1 0 1 -1 -3]
[0 2 -2 1 2]
[0 6 -6 0 15]
[0 -2 2 -5 10]
行初等变换为
[1 0 1 -1 -3]
[0 2 -2 1 2]
[0 0 0 -3 9]
[0 0 0 -4 12]
行初等变换为
[1 0 1 -1 -3]
[0 2 -2 1 2]
[0 0 0 1 -3]
[0 0 0 0 0]
行初等变换为
[1 0 1 0 -6]
[0 2 -2 0 5]
[0 0 0 1 -3]
[0 0 0 0 0]
行初等变换为
[1 0 1 0 -6]
[0 1 -1 0 5/2]
[0 0 0 1 -3]
[0 0 0 0 0]
方程组同解变形为
x1 = -x3+6x5
x2 = x3-(5/2)x5
x4 = 3x5
取 x3=1, x5=0, 得基础解系 (-1 1 1 0 0)^T;
取 x3=0, x5=2, 得基础解系 (12 -5 0 6 2)^T;
方程组通解是
x = k (-1 1 1 0 0)^T+c (12 -5 0 6 2)^T
其中 k, c 为任意常数。
[1 0 1 -1 -3]
[1 2 -1 0 -1]
[4 6 -2 -4 3]
[2 -2 4 -7 4]
行初等变换为
[1 0 1 -1 -3]
[0 2 -2 1 2]
[0 6 -6 0 15]
[0 -2 2 -5 10]
行初等变换为
[1 0 1 -1 -3]
[0 2 -2 1 2]
[0 0 0 -3 9]
[0 0 0 -4 12]
行初等变换为
[1 0 1 -1 -3]
[0 2 -2 1 2]
[0 0 0 1 -3]
[0 0 0 0 0]
行初等变换为
[1 0 1 0 -6]
[0 2 -2 0 5]
[0 0 0 1 -3]
[0 0 0 0 0]
行初等变换为
[1 0 1 0 -6]
[0 1 -1 0 5/2]
[0 0 0 1 -3]
[0 0 0 0 0]
方程组同解变形为
x1 = -x3+6x5
x2 = x3-(5/2)x5
x4 = 3x5
取 x3=1, x5=0, 得基础解系 (-1 1 1 0 0)^T;
取 x3=0, x5=2, 得基础解系 (12 -5 0 6 2)^T;
方程组通解是
x = k (-1 1 1 0 0)^T+c (12 -5 0 6 2)^T
其中 k, c 为任意常数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |