已知双曲线的焦点在F1、 F2上,求F1、 F2的距离。

 我来答
爱刷2417
2023-01-09 · TA获得超过141个赞
知道答主
回答量:206
采纳率:77%
帮助的人:72.7万
展开全部

若 ∠F1PF2=θ,
则 S△F1PF2=b2×cot(θ/2)或S△F1PF2=b2/tan(θ/2)
·例:已知F1、F2为双曲线C:x2-y2=1的左右焦点,点P在C上,∠F1PF2=60°,则P到x轴的距离为多
少?
解:由双曲线焦点三角形面积公式得:
S△F1PF2=b2×cot(θ/2)=√3
设P到x轴的距离为h,则 S△F1PF2 =1/2×h×2√2; h =√6/2 参数方程

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式