为什么上三角矩阵和下三角矩阵的特征值就是矩阵对角线上的元素?
2个回答
展开全部
特征多项式f(a)=|aE-A|,f(a)=0的根即为特征值,对于上(下)三角阵,右边的行列式恰好是f(a)=(a-a11)(a-a22)...(a-ann),所以特征值自然就是对角线元素。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。[2]在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用。
扩展资料:
矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用弊庆带上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考《矩阵理论》。
在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个已持续几个世纪以来的课题,是一个不断扩大的研究领域。矩阵分解方法简化了理论和实际的计算租芦。
针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。无限矩阵差敏发生在行星理论和原子理论中。无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |