
已知tan(兀/4+a)=3,计算:(1)tana;(2)2sinacosa+3cos2a/5cos2a-3sin2a 20
展开全部
解(1)由tan(兀/4+a)=3
得(tanπ/4+tana)/(1-tanπ/4tana)=3
即(1+tana)/(1-tana)=3
即1+tana=3-3tana
即4tana=2
即tana=1/2
(2)2sinacosa+3cos2a/5cos2a-3sin2a
=(2sinacosa+3cos²a-3sin²a)/(5cos²a-5sin²a-6sinacosa)
=(2sinacosa+3cos²a-3sin²a)÷cos²a/(5cos²a-5sin²a-6sinacosa)÷cos²a
=(2tana+3-3tan²a)/(5-5tan²a-6tana)
=(2*1/2+3-3(1/2)²)/(5-5(1/2)²-6*1/2)
=(1+3-3/4)/(5-5/4-3)
=(4-3/4)/(2-5/4)
=(9/4)/(3/4)
=3
得(tanπ/4+tana)/(1-tanπ/4tana)=3
即(1+tana)/(1-tana)=3
即1+tana=3-3tana
即4tana=2
即tana=1/2
(2)2sinacosa+3cos2a/5cos2a-3sin2a
=(2sinacosa+3cos²a-3sin²a)/(5cos²a-5sin²a-6sinacosa)
=(2sinacosa+3cos²a-3sin²a)÷cos²a/(5cos²a-5sin²a-6sinacosa)÷cos²a
=(2tana+3-3tan²a)/(5-5tan²a-6tana)
=(2*1/2+3-3(1/2)²)/(5-5(1/2)²-6*1/2)
=(1+3-3/4)/(5-5/4-3)
=(4-3/4)/(2-5/4)
=(9/4)/(3/4)
=3
展开全部
解:(1)tana=tan(π/4+a-π/4)=[tan(π/4+a)-tanπ/4]/[1+tan(π/4+a)tanπ/4]=(3-1)/(1+3*1)=1/2
(2)原式=(2sinacosa+3cos²a-3sin²a)/(5cos²a-5sin²a-6sinacosa) 分子分母除以cos²a
=(2tana+3-3tan²a)/(5-5tan²a-6tana)
=(1+3-3/4)/(5-5/4-3)
=13/
(2)原式=(2sinacosa+3cos²a-3sin²a)/(5cos²a-5sin²a-6sinacosa) 分子分母除以cos²a
=(2tana+3-3tan²a)/(5-5tan²a-6tana)
=(1+3-3/4)/(5-5/4-3)
=13/
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询