2个回答
展开全部
令u=x-t。t=x时u=0,t=0时u=x。
所以换元过后,积分上限是0,积分下限是x。
du=-dt。这个负号用来把积分的上下限交换了。
所以换元过后,积分上限是0,积分下限是x。
du=-dt。这个负号用来把积分的上下限交换了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
dcosbx = -bsinbx dx
-(1/b)dcosbx = sinbx dx
//
∫ e^(ax) sinbx dx
=-(1/b) ∫ e^(ax) dcosbx
=-(1/b) e^(ax).cosbx +(a/b) ∫ e^(ax) cosbx dx
=-(1/b) e^(ax).cosbx + (a/b^2) ∫ e^(ax) dsinbx
=-(1/b) e^(ax).cosbx + (a/b^2) e^(ax). sinbx - (a^2/b^2) ∫ e^(ax) sinbx dx
[(a^2+b^2)/b^2] ∫ e^(ax) sinbx dx = -(1/b) e^(ax).cosbx + (a/b^2) e^(ax). sinbx
∫ e^(ax) sinbx dx
=-[b/(a^2+b^2)]e^(ax).cosbx + [a/(a^2+b^2) ] e^(ax). sinbx + C
-(1/b)dcosbx = sinbx dx
//
∫ e^(ax) sinbx dx
=-(1/b) ∫ e^(ax) dcosbx
=-(1/b) e^(ax).cosbx +(a/b) ∫ e^(ax) cosbx dx
=-(1/b) e^(ax).cosbx + (a/b^2) ∫ e^(ax) dsinbx
=-(1/b) e^(ax).cosbx + (a/b^2) e^(ax). sinbx - (a^2/b^2) ∫ e^(ax) sinbx dx
[(a^2+b^2)/b^2] ∫ e^(ax) sinbx dx = -(1/b) e^(ax).cosbx + (a/b^2) e^(ax). sinbx
∫ e^(ax) sinbx dx
=-[b/(a^2+b^2)]e^(ax).cosbx + [a/(a^2+b^2) ] e^(ax). sinbx + C
更多追问追答
追问
原式的第一步我能看懂,但怎么由第一步变为第二步的?
追答
∫ udv = uv - ∫vdu
//
-(1/b) ∫ e^(ax) dcosbx
=-(1/b)e^(ax).cosbx + (1/b) ∫ cosbx de^(ax)
=-(1/b)e^(ax).cosbx + (1/b) ∫ cosbx . ae^(ax) dx
=-(1/b)e^(ax).cosbx + (a/b) ∫ cosbx . e^(ax) dx
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询