3个回答
展开全部
反证吧:假设线性相关,设k*a1=a2 (k不等于0)
入1*a1=A*a1
入2*a2=A*a2=A*(k*a1)=k*(A*a1)=k*入1*a1
得到a1=入2/(k*入1)*a2
最初我们假设a1=a2/k,所以入2/(k*入1)=1/k =>入1/入2=1,与题中入1入2不同矛盾,故a1a2 线性无关
入1*a1=A*a1
入2*a2=A*a2=A*(k*a1)=k*(A*a1)=k*入1*a1
得到a1=入2/(k*入1)*a2
最初我们假设a1=a2/k,所以入2/(k*入1)=1/k =>入1/入2=1,与题中入1入2不同矛盾,故a1a2 线性无关
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询