如图:某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(Rt△FHE,H是直
如图:某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(Rt△FHE,H是直角顶点)来处理污水,管道越长,污水净化效果越好,设计要求管道的接口H是...
如图:某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(Rt△FHE,H是直角顶点)来处理污水,管道越长,污水净化效果越好,设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上。已知AB=20米,AD=10根号3米,记∠BHE=θ
(2)若sinθ+cosθ=(根3+1)/2,求此时管道的长度L 展开
(2)若sinθ+cosθ=(根3+1)/2,求此时管道的长度L 展开
展开全部
解:(1)EH=10cosθ,FH=10sinθ
EF=10sinθcosθ 分
由于BE=10tanθ≤103, AF=10tanθ≤103 故33≤tanθ≤3,θ∈[π6,π3]分
L=10cosθ+10sinθ+10sinθcosθ,θ∈[π6,π3]
(2) sinθ+cosθ=2时,sinθ•cosθ=12,
L=20(2+1);
(3)L=10cosθ+10sinθ+10sinθcosθ=10(sinθ+cosθ+1sinθcosθ)
设sinθ+cosθ=t 则sinθ•cosθ=t2-12
由于θ∈[π6,π3],所以t=sinθ+cosθ=2sin(θ+π4)∈[3+12, 2]
L=20t-1在[3+12, 2]内单调递减,
于是当t=3+12时,即θ=π6,θ=π3时L的最大值20(3+1)米.
答:当θ=π6或θ=π3时所铺设的管道最短,为20(3+1)米分
EF=10sinθcosθ 分
由于BE=10tanθ≤103, AF=10tanθ≤103 故33≤tanθ≤3,θ∈[π6,π3]分
L=10cosθ+10sinθ+10sinθcosθ,θ∈[π6,π3]
(2) sinθ+cosθ=2时,sinθ•cosθ=12,
L=20(2+1);
(3)L=10cosθ+10sinθ+10sinθcosθ=10(sinθ+cosθ+1sinθcosθ)
设sinθ+cosθ=t 则sinθ•cosθ=t2-12
由于θ∈[π6,π3],所以t=sinθ+cosθ=2sin(θ+π4)∈[3+12, 2]
L=20t-1在[3+12, 2]内单调递减,
于是当t=3+12时,即θ=π6,θ=π3时L的最大值20(3+1)米.
答:当θ=π6或θ=π3时所铺设的管道最短,为20(3+1)米分
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询