证明下列不等式,当x>0时,1+xln
证明不等式当x>0时,1+xln(x+(1+x)^(1/2))>(1+x)^(1/2)二楼的方法很新颖。三楼为什么x→0+时f'(x)>0就可以说f'(x)在(0,无穷大...
证明不等式
当x>0时,1+xln(x+(1+x)^(1/2))>(1+x)^(1/2)
二楼的方法很新颖。
三楼为什么x→0+时f'(x)>0就可以说f'(x)在(0,无穷大)时都>0? 展开
当x>0时,1+xln(x+(1+x)^(1/2))>(1+x)^(1/2)
二楼的方法很新颖。
三楼为什么x→0+时f'(x)>0就可以说f'(x)在(0,无穷大)时都>0? 展开
1个回答
展开全部
令银锋y=(1+x)^(1/锋毁晌2);
so: x=y^2-1;(y>1)
f(y)=1+y^2*ln(y^2+y)-y;
f'(y)=2y*ln(y^2+y)+y^2*(1/y^2+y)*(2y+1)-1
=2y*ln(y^2+y)+(2y^2+y)/余氏(y+1)-1
>2ln2-1>ln4-lne>0;(y>1)
so: f'(y)>0 => f(y)>f(1)=1+1*ln2-1=ln2>0;
so: f(y)>0;
so: x=y^2-1;(y>1)
f(y)=1+y^2*ln(y^2+y)-y;
f'(y)=2y*ln(y^2+y)+y^2*(1/y^2+y)*(2y+1)-1
=2y*ln(y^2+y)+(2y^2+y)/余氏(y+1)-1
>2ln2-1>ln4-lne>0;(y>1)
so: f'(y)>0 => f(y)>f(1)=1+1*ln2-1=ln2>0;
so: f(y)>0;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询