acosC,bcosB,ccosA成等差数列,
1个回答
展开全部
因为acosC、-bcosB、ccosA成等差数列,
所以,acosC+ccosA=-2bcosB
根据正弦定理:a=2RsinA,b=2RsinB,c=2RsinC,代入上式并消去2R得:
sinAcosC+sinCcosA=-2sinBcosB
即:sin(A+C)=-2sinBcosB
因为A+C+B=180,所以A+C=180-B,因此由诱导公式上式又可以化为:
sinB=-2sinBcosB
因为sinB不等于0,所以两边约去sinB,得:
1=-2cosB
即:cosB=-1/2
因为角B是ΔABC的内角,所以0<B<180度,因此,角B=120度。
所以,acosC+ccosA=-2bcosB
根据正弦定理:a=2RsinA,b=2RsinB,c=2RsinC,代入上式并消去2R得:
sinAcosC+sinCcosA=-2sinBcosB
即:sin(A+C)=-2sinBcosB
因为A+C+B=180,所以A+C=180-B,因此由诱导公式上式又可以化为:
sinB=-2sinBcosB
因为sinB不等于0,所以两边约去sinB,得:
1=-2cosB
即:cosB=-1/2
因为角B是ΔABC的内角,所以0<B<180度,因此,角B=120度。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询