acosC,bcosB,ccosA成等差数列,

a6198738
2013-07-10 · TA获得超过341个赞
知道小有建树答主
回答量:370
采纳率:0%
帮助的人:186万
展开全部
因为acosC、-bcosB、ccosA成等差数列,
所以,acosC+ccosA=-2bcosB
根据正弦定理:a=2RsinA,b=2RsinB,c=2RsinC,代入上式并消去2R得:
sinAcosC+sinCcosA=-2sinBcosB
即:sin(A+C)=-2sinBcosB
因为A+C+B=180,所以A+C=180-B,因此由诱导公式上式又可以化为:
sinB=-2sinBcosB
因为sinB不等于0,所以两边约去sinB,得:
1=-2cosB
即:cosB=-1/2
因为角B是ΔABC的内角,所以0<B<180度,因此,角B=120度。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式