一道高数题,求详细过程 80
3个回答
展开全部
z
=e^u.cosv
=e^(x^2-y). cos(3xy)
∂z/∂x
=2x.e^(x^2-y). cos(3xy) +e^(x^2-y). [-sin(3xy) ].(3y)
=e^(x^2-y).[2xcos(3xy) -3ysin(3xy)]
∂z/∂y
=-e^(x^2-y). cos(3xy) +e^(x^2-y). [-sin(3xy) ].(3x)
=-e^(x^2-y).[ -cos(3xy)-3x.sin(3xy)]
=e^u.cosv
=e^(x^2-y). cos(3xy)
∂z/∂x
=2x.e^(x^2-y). cos(3xy) +e^(x^2-y). [-sin(3xy) ].(3y)
=e^(x^2-y).[2xcos(3xy) -3ysin(3xy)]
∂z/∂y
=-e^(x^2-y). cos(3xy) +e^(x^2-y). [-sin(3xy) ].(3x)
=-e^(x^2-y).[ -cos(3xy)-3x.sin(3xy)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询